Genome Sequence, Full-Length Infectious cDNA Clone, and Mapping of Viral Double-Stranded RNA Accumulation Determinant of Hypovirus CHV1-EP721

Author:

Lin Haiyan1,Lan Xiuwan1,Liao Hong1,Parsley Todd B.2,Nuss Donald L.2,Chen Baoshan13

Affiliation:

1. Guangxi Key Laboratory of Subtropical Bioresource Conservation and Utilization

2. Center for Biosystems Research, 5115 Plant Sciences Building, University of Maryland Biotechnology Institute, College Park, Maryland 20742

3. Key Laboratory of Ministry of Education of China for Microbial and Plant Genetic Engineering, Guangxi University, 100 Daxiu Road, Nanning, Guangxi 530004, People's Republic of China

Abstract

ABSTRACT Cryphonectria parasitica strain EP721 is infected with a strain of hypovirus CHV1, CHV1-EP721, and exhibits typical hypovirulence-associated traits such as reduced pigmentation and reduced asexual sporulation. However, the accumulation of the viral double-stranded RNA (dsRNA) in this hypovirus-infected C. parasitica strain is atypically low. We now report the complete nucleotide sequence and construction of a full-length infectious cDNA clone for hypovirus CHV1-EP721. The genome sequence of CHV1-EP721 was determined to be 12,724 bp in length and to share extensive homology with two other hypovirus strains, CHV1-Euro7 and CHV1-EP713, with an average of 99% and 90% identities at the nucleotide level and 99% and 92% identities at the amino acid level, respectively. CHV1-EP721 was successfully introduced into virus-free fungal host strain EP721(-v) by transfection with transcripts derived from a full-length viral cDNA. The transfected strain had a phenotype indistinguishable from that of EP721, and the accumulation of CHV1-EP721 dsRNA in the transfectant was lower than those transfected by CHV1-Euro7 and CHV1-EP713 transcripts. Through the construction of chimeric viruses by domain swapping using infectious cDNA clones of CHV1-EP721, CHV1-EP713, and CHV1-Euro7 hypoviruses, the determinant for the low level of viral dsRNA accumulation in CHV1-EP721 was mapped to the second of two CHV1-EP721 open reading frames (ORFs), ORF B. Further refined swapping of domains within ORF B identified a 2.5-kb coding region between p48 and the polymerase domain of CHV1-EP721 as being responsible for the low viral dsRNA accumulation. Evidence is also provided that low rates of hypovirus transmission through conidial spores correlates with low viral dsRNA accumulation.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3