Nonsense Suppression in a Multiauxotrophic Derivative of Escherichia coli 15T − : Identification and Consequences of an Amber Triplet in the Deoxyribomutase Gene

Author:

Bockrath R. C.12,Osborn Mary12,Person Stanley12

Affiliation:

1. Microbial Genetics in the School of Biology, The University of Sussex, Brighton, Sussex, England

2. Biophysics Department, The Pennsylvania State University, University Park, Pennsylvania 16802

Abstract

Previously, arginine revertants of Escherichia coli WWU, a derivative of E. coli 15T , have been subdivided by two independent methods: (i) the streak morphology on nutrient agar, and (ii) the pattern of phage growth using amber and ochre mutants of bacteriophage T4. In the first assay, revertants were subdivided into two classes according to the appearance of streaks after incubation on nutrient agar, a thick, even line of growth defining normal revertants and a thin, irregular line defining aberrant revertants. In the second assay, revertants were classified by the suppressors they contained. The present work demonstrates that revertants containing an amber suppressor show the aberrant morphology and are also able to catabolize thymidine for energy and carbon. This is in contrast to the parent WWU containing no suppressor, which shows a normal morphology and cannot utilize thymidine as an energy source. Revertants containing no suppressor, isolated specifically for their ability to catabolize thymidine, show an aberrant morphology. Together, these results indicate that the aberrant morphology results from suppression of an amber triplet in a gene of the thymidine catabolic pathway. Enzyme assays show the amber triplet to be in the gene specifying deoxyribomutase. It is suggested that the aberrant arginine revertants are analogous to high thymine-requiring mutants and that, in general, high and low thymine-requiring mutants differ from one another in their ability to catabolize deoxyribose-1-phosphate.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3