Mechanism of Enhanced Activity of Liposome-Entrapped Aminoglycosides against Resistant Strains of Pseudomonas aeruginosa

Author:

Mugabe Clement1,Halwani Majed1,Azghani Ali O.2,Lafrenie Robert M.3,Omri Abdelwahab1

Affiliation:

1. The Novel Drug and Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario P3E 2C6, Canada

2. University of Texas at Tyler, Department of Biology, 3900 University Blvd, Tyler, Texas 75799

3. Division of Tumour Biology, Northeastern Ontario Regional Cancer Centre, Sudbury, Ontario, Canada P3E 5J1, Canada

Abstract

ABSTRACT Pseudomonas aeruginosa is inherently resistant to most conventional antibiotics. The mechanism of resistance of this bacterium is mainly associated with the low permeability of its outer membrane to these agents. We sought to assess the bactericidal efficacy of liposome-entrapped aminoglycosides against resistant clinical strains of P. aeruginosa and to define the mechanism of liposome-bacterium interactions. Aminoglycosides were incorporated into liposomes, and the bactericidal efficacies of both free and liposomal drugs were evaluated. To define the mechanism of liposome-bacterium interactions, transmission electron microscopy (TEM), flow cytometry, lipid mixing assay, and immunocytochemistry were employed. Encapsulation of aminoglycosides into liposomes significantly increased their antibacterial activity against the resistant strains used in this study (MICs of ≥32 versus ≤8 μg/ml). TEM observations showed that liposomes interact intimately with the outer membrane of P. aeruginosa , leading to the membrane deformation. The flow cytometry and lipid mixing assays confirmed liposome-bacterial membrane fusion, which increased as a function of incubation time. The maximum fusion rate was 54.3% ± 1.5% for an antibiotic-sensitive strain of P. aeruginosa and 57.8% ± 1.9% for a drug-resistant strain. The fusion between liposomes and P. aeruginosa significantly enhanced the antibiotics' penetration into the bacterial cells (3.2 ± 2.3 versus 24.2 ± 6.2 gold particles/bacterium, P ≤ 0.001). Our data suggest that liposome-entrapped antibiotics could successfully resolve infections caused by antibiotic-resistant P. aeruginosa through an enhanced mechanism of drug entry into the bacterial cells.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 137 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3