9-(2-Phosphonylmethoxyethyl)adenine in the treatment of murine acquired immunodeficiency disease and opportunistic herpes simplex virus infections

Author:

Gangemi J D1,Cozens R M1,De Clercq E1,Balzarini J1,Hochkeppel H K1

Affiliation:

1. University of South Carolina School of Medicine, Columbia 29208.

Abstract

The murine model of acquired immunodeficiency disease was used to evaluate both the antiretroviral and antiherpetic activities of the acyclic nucleotide analog 9-(2-phosphonylmethoxyethyl)adenine (PMEA). The antiretroviral activity of PMEA was compared with that of azidothymidine (AZT) in mice receiving the drug either immediately after infection or at late times in disease progression. Both AZT (oral, 30 mg/kg) and PMEA (parenteral, 25 and 5 mg/kg) were effective in slowing the development of disease when administered daily beginning on the day of infection. In contrast, neither drug alone was effective in modifying disease outcome when administered several weeks after viral infection. Human recombinant alpha interferon (rhuIFN alpha-B/D at 5 x 10(7) U/kg) was also ineffective when administered late in the course of disease. However, when administered in combination, both alpha interferon and PMEA (25 mg/kg) were able to suppress disease progression even when treatment was initiated as late as 3 weeks postinfection. Mice that were immunocompromised due to LP-BM5 virus infection were highly susceptible to acute (lethal) infection with herpes simplex virus type 1, whereas their immunocompetent littermates were not. PMEA was as effective as acyclovir in the treatment of opportunistic herpes simplex virus type 1 infections in LP-BM5 virus-infected mice. Thus, like AZT, PMEA was effective against retrovirus infection, and, like acyclovir, PMEA was effective against herpes simplex virus type 1 infection. This gives PMEA the unique potential of being useful in the treatment of opportunistic herpes simplex virus infections as well as the underlying retroviral disease.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3