Dynamics of nitrification and denitrification in root-oxygenated sediments and adaptation of ammonia-oxidizing bacteria to low-oxygen or anoxic habitats

Author:

Bodelier P,Libochant J A,Blom C,Laanbroek H J

Abstract

Oxygen-releasing plants may provide aerobic niches in anoxic sediments and soils for ammonia-oxidizing bacteria. The oxygen-releasing, aerenchymatous emergent macrophyte Glyceria maxima had a strong positive effect on numbers and activities of the nitrifying bacteria in its root zone in spring and early summer. The stimulation of the aerobic nitrifying bacteria in the freshwater sediment, ascribed to oxygen release by the roots of G. maxima, disappeared in late summer. Numbers and activities of the nitrifying bacteria were positively correlated, and a positive relationship with denitrification activities also was found. To assess possible adaptations of ammonia-oxidizing bacteria to low-oxygen or anoxic habitats, a comparison was made between the freshwater lake sediment and three soils differing in oxicity profiles. Oxygen kinetics and tolerance to anoxia of the ammonia-oxidizing communities from these habitats were determined. The apparent K(infm) values for oxygen of the ammonia-oxidizing community in the lake sediment were in the range of 5 to 15 (mu)M, which was substantially lower than the range of K(infm) values for oxygen of the ammonia-oxidizing community from a permanently oxic dune location. Upon anoxic incubation, the ammonia-oxidizing communities of dune, chalk grassland, and calcareous grassland soils lost 99, 95, and 92% of their initial nitrifying capacity, respectively. In contrast, the ammonia-oxidizing community in the lake sediment started to nitrify within 1 h upon exposure to oxygen at the level of the initial capacity. It is argued that the conservation of the nitrifying capacity during anoxic periods and the ability to react instantaneously to the presence of oxygen are important traits of nitrifiers in fluctuating oxic-anoxic environments such as the root zone of aerenchymatous plant species.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference43 articles.

1. Phragmites australis-a preliminary study of soil-oxidizing sites and internal gas transport pathways;Armstrong J.;New Phytol.,1988

2. Mechanisms of flood tolerance in plants;Armstrong W.;Acta Bot. Neerl.,1994

3. Nitrate reduction in the leaves of and numbers of nitrifiers in the rhizosphere of Plantago lanceolata growing in two contrasting sites;Blacquière T.;Plant Soil,1986

4. Flooding: the survival strategies of plants;Blom C. W. P. M.;Tree,1996

5. Physiological ecology of riverside species: adaptive responses of plants to submergence;Blom C. W. P. M.;Ann. Bot.,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3