Author:
Bodelier P,Libochant J A,Blom C,Laanbroek H J
Abstract
Oxygen-releasing plants may provide aerobic niches in anoxic sediments and soils for ammonia-oxidizing bacteria. The oxygen-releasing, aerenchymatous emergent macrophyte Glyceria maxima had a strong positive effect on numbers and activities of the nitrifying bacteria in its root zone in spring and early summer. The stimulation of the aerobic nitrifying bacteria in the freshwater sediment, ascribed to oxygen release by the roots of G. maxima, disappeared in late summer. Numbers and activities of the nitrifying bacteria were positively correlated, and a positive relationship with denitrification activities also was found. To assess possible adaptations of ammonia-oxidizing bacteria to low-oxygen or anoxic habitats, a comparison was made between the freshwater lake sediment and three soils differing in oxicity profiles. Oxygen kinetics and tolerance to anoxia of the ammonia-oxidizing communities from these habitats were determined. The apparent K(infm) values for oxygen of the ammonia-oxidizing community in the lake sediment were in the range of 5 to 15 (mu)M, which was substantially lower than the range of K(infm) values for oxygen of the ammonia-oxidizing community from a permanently oxic dune location. Upon anoxic incubation, the ammonia-oxidizing communities of dune, chalk grassland, and calcareous grassland soils lost 99, 95, and 92% of their initial nitrifying capacity, respectively. In contrast, the ammonia-oxidizing community in the lake sediment started to nitrify within 1 h upon exposure to oxygen at the level of the initial capacity. It is argued that the conservation of the nitrifying capacity during anoxic periods and the ability to react instantaneously to the presence of oxygen are important traits of nitrifiers in fluctuating oxic-anoxic environments such as the root zone of aerenchymatous plant species.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Reference43 articles.
1. Phragmites australis-a preliminary study of soil-oxidizing sites and internal gas transport pathways;Armstrong J.;New Phytol.,1988
2. Mechanisms of flood tolerance in plants;Armstrong W.;Acta Bot. Neerl.,1994
3. Nitrate reduction in the leaves of and numbers of nitrifiers in the rhizosphere of Plantago lanceolata growing in two contrasting sites;Blacquière T.;Plant Soil,1986
4. Flooding: the survival strategies of plants;Blom C. W. P. M.;Tree,1996
5. Physiological ecology of riverside species: adaptive responses of plants to submergence;Blom C. W. P. M.;Ann. Bot.,1994
Cited by
195 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献