Pseudomonas fluorescens adhesion and transport through porous media are affected by lipopolysaccharide composition

Author:

Williams V1,Fletcher M1

Affiliation:

1. Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore 21202, USA.

Abstract

The objectives of this work were (i) to use transposon mutagenesis to produce mutants of Pseudomonas fluorescens that were altered in adhesion ability and transport through porous media and (ii) to identify the alterations in surface characteristics that were responsible for the changes in attachment. Mutants of P. fluorescens were generated with TnphoA, which enabled identification of mutants that were altered in surface proteins. Transposon mutants were screened for alterations in adhesion ability by attachment assays on hydrophobic polystyrene and water-wettable polystyrene. Four TnphoA mutants with increased adhesion to the hydrophobic surface and decreased adhesion to the water-wettable surface were obtained. Transport of the strains through porous media was evaluated by passing suspensions of each mutant and the parent through columns containing quartz sand and determining the number of cells retained in the columns. The mutants all demonstrated increased adhesion and retention in the columns. Southern analysis demonstrated two types of mutants with separate transposon insertion sites. Polyacrylamide gel electrophoresis of the strains demonstrated that the O antigen on the lipopolysaccharide was either attenuated or absent. Lack of this polysaccharide, and the consequent increased exposure of the lipid moiety of the lipopolysaccharide, is probably responsible for the increase in adhesion to the hydrophobic substrata and retention in the sand column. This work combined with previous studies of attachment of P. fluorescens demonstrates that more than one type of polymer can mediate the adhesion of this organism to nonbiological surfaces.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 132 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3