New Susceptibility Breakpoints for First-Line Antituberculosis Drugs Based on Antimicrobial Pharmacokinetic/Pharmacodynamic Science and Population Pharmacokinetic Variability

Author:

Gumbo Tawanda1

Affiliation:

1. Department of Medicine, UT Southwestern Medical Center, Dallas, Texas

Abstract

ABSTRACT Arguably, one of the most common and consequential laboratory tests performed in the world is Mycobacterium tuberculosis susceptibility testing. M. tuberculosis resistance is defined by growth of ≥1% of a bacillary inoculum on the critical concentration of an antibiotic. The critical concentration was chosen based on inhibition of ≥95% of wild-type isolates. The critical concentration of isoniazid is either 0.2 or 1.0 mg/liter, that of rifampin is 1.0 mg/liter, that of pyrazinamide is 100 mg/liter, that of ethambutol is 5.0 mg/liter, and that of fluoroquinolones is 1.0 mg/liter. However, the relevance of these concentrations to microbiologic and clinical outcomes is unclear. Critical concentrations were identified using the ability to achieve the antibiotic area under the concentration-time curve/MIC ratio associated with ≥90% of maximal kill (EC 90 ) of M. tuberculosis in ≥90% of patients. Population pharmacokinetic parameters and their variability encountered in tuberculosis patients were utilized in Monte Carlo simulations to determine the probability that particular daily doses of the drugs would achieve or exceed the EC 90 in the epithelial lining fluid of 10,000 tuberculosis patients. Failure to achieve EC 90 in ≥90% of patients at a particular MIC was defined as drug resistance. The critical concentrations of moxifloxacin and ethambutol remained unchanged, but a critical concentration of 50 mg/liter was identified for pyrazinamide, 0.0312 mg/liter and 0.125 mg/liter were defined for low- and high-level isoniazid resistance, respectively, and 0.0625 mg/liter was defined for rifampin. Thus, current critical concentrations of first-line antituberculosis drugs are overoptimistic and should be set lower. With the proposed breakpoints, the rates of multidrug-resistant tuberculosis could become 4-fold higher than currently assumed.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 125 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3