Bombyx mori Midgut Membrane Protein P252, Which Binds to Bacillus thuringiensis Cry1A, Is a Chlorophyllide-Binding Protein, and the Resulting Complex Has Antimicrobial Activity

Author:

Pandian Ganesh N.1,Ishikawa Toshiki1,Togashi Makoto1,Shitomi Yasuyuki1,Haginoya Kohsuke1,Yamamoto Shuhei1,Nishiumi Tadayuki1,Hori Hidetaka1

Affiliation:

1. Laboratories of Applied Biosciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan

Abstract

ABSTRACT The epithelial cell membrane 252-kDa protein (P252) isolated in our laboratory from Bombyx mori midgut was shown to bind strongly with Cry1Aa, Cry1Ab, and Cry1Ac toxins of Bacillus thuringiensis (15). In the current paper, P252 was shown to bind with chlorophyllide (Chlide) to form red fluorescent protein (RFP) complex, termed Bm252RFP, with absorbance and fluorescence emission peaks at 600 nm and 620 nm, respectively. P252 at a concentration of 1 μM is shown to bind with about 50 μM Chlide in a positively cooperative reaction to form Bm252RFP under aerobic conditions and in the presence of light at 37°C. Various parameters influencing this reaction have been optimized for efficient in vitro chemical synthesis of Bm252RFP. Circular dichroism spectra revealed that P252 is composed of a β-structure (39.8% ± 2.2%, based on 5 samples) with negligible contribution of α-helix structure. When bound to Chlide, the β-structure content in the complex is reduced to 21.6% ± 3.1% ( n = 5). Since Chlide had no secondary structure, the observed reduction suggests significant conformational changes of P252 during the formation of Bm252RFP complex. Bm252RFP had antimicrobial activity against Escherichia coli , Serratia marcescens , B. thuringiensis , and Saccharomyces cerevisiae with 50% effective concentrations of 2.82, 2.94, 5.88 μM, and 21.6 μM, respectively. This is the first report ever to show clear, concrete binding characteristics of the midgut protein to form an RFP having significant antimicrobial activity.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3