Affiliation:
1. Howard Hughes Medical Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0650
Abstract
ABSTRACT
Polycomb group (PcG) transcription regulatory proteins maintain cell identity by sustained repression of numerous genes. The differentiation of embryonic stem (ES) cells induces a genome-wide shift in PcG target gene expression. We investigated the effects of differentiation and protein interactions on CBX family PcG protein localization and dynamics by using fluorescence imaging. In mouse ES cells, different CBX proteins exhibited distinct distributions and mobilities. Most CBX proteins were enriched in foci known as Polycomb bodies. Focus formation did not affect CBX protein mobilities, and the foci dispersed during ES cell differentiation. The mobilities of CBX proteins increased upon the induction of differentiation and decreased as differentiation progressed. The deletion of the chromobox, which mediates interactions with RING1B, prevented the immobilization of CBX proteins. In contrast, the deletion of the chromodomain, which can bind trimethylated lysine 27 of histone H3, had little effect on CBX protein dynamics. The distributions and mobilities of most CBX proteins corresponded to those of CBX-RING1B complexes detected by using bimolecular fluorescence complementation analysis. Epigenetic reprogramming during ES cell differentiation is therefore associated with global changes in the subnuclear distributions and dynamics of CBX protein complexes.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
98 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献