Transcriptional Map of Respiratory Versatility in the Hyperthermophilic Crenarchaeon Pyrobaculum aerophilum

Author:

Cozen Aaron E.1,Weirauch Matthew T.2,Pollard Katherine S.3,Bernick David L.2,Stuart Joshua M.2,Lowe Todd M.2

Affiliation:

1. Department of Ocean Sciences, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064

2. Department of Biomolecular Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064

3. Department of Statistics, University of California Davis, One Shields Ave., Davis, California 95616

Abstract

ABSTRACT Hyperthermophilic crenarchaea in the genus Pyrobaculum are notable for respiratory versatility, but relatively little is known about the genetics or regulation of crenarchaeal respiratory pathways. We measured global gene expression in Pyrobaculum aerophilum cultured with oxygen, nitrate, arsenate and ferric iron as terminal electron acceptors to identify transcriptional patterns that differentiate these pathways. We also compared genome sequences for four closely related species with diverse respiratory characteristics ( Pyrobaculum arsenaticum , Pyrobaculum calidifontis , Pyrobaculum islandicum , and Thermoproteus neutrophilus ) to identify genes associated with different respiratory capabilities. Specific patterns of gene expression in P. aerophilum were associated with aerobic respiration, nitrate respiration, arsenate respiration, and anoxia. Functional predictions based on these patterns include separate cytochrome oxidases for aerobic growth and oxygen scavenging, a nitric oxide-responsive transcriptional regulator, a multicopper oxidase involved in denitrification, and an archaeal arsenate respiratory reductase. We were unable to identify specific genes for iron respiration, but P. aerophilum exhibited repressive transcriptional responses to iron remarkably similar to those controlled by the ferric uptake regulator in bacteria. Together, these analyses present a genome-scale view of crenarchaeal respiratory flexibility and support a large number of functional and regulatory predictions for further investigation. The complete gene expression data set can be viewed in genomic context with the Archaeal Genome Browser at archaea.ucsc.edu.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3