Degradation and mineralization of atrazine by a soil bacterial isolate

Author:

Radosevich M1,Traina S J1,Hao Y L1,Tuovinen O H1

Affiliation:

1. Department of Agronomy, Ohio State University, Columbus 43210.

Abstract

An atrazine-degrading bacterial culture was isolated from an agricultural soil previously impacted by herbicide spills. The organism was capable of using atrazine under aerobic conditions as the sole source of C and N. Cyanuric acid could replace atrazine as the sole source of N, indicating that the organism was capable of ring cleavage. Ring cleavage was confirmed in 14CO2 evolution experiments with [U-14C-ring]atrazine. Between 40 and 50% of ring-14C was mineralized to 14CO2. [14C]biuret and [14C]urea were detected in spent culture media. Cellular assimilation of 14C was negligible, in keeping with the fully oxidized valence of the ring carbon. Chloride release was stoichiometric. The formation of ammonium during atrazine degradation was below the stoichiometric amount, suggesting a deficit due to cellular assimilation and metabolite-N accumulation. With excess glucose and with atrazine as the sole N source, free ammonium was not detected, suggesting assimilation into biomass. The organism degraded atrazine anaerobically in media which contained (i) atrazine only, (ii) atrazine and glucose, and (iii) atrazine, glucose, and nitrate. To date, this is the first report of a pure bacterial isolate with the ability to cleave the s-triazine ring structure of atrazine. It was also concluded that this bacterium was capable of dealkylation, dechlorination, and deamination in addition to ring cleavage.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 269 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3