Nickel Availability and hupSL Activation by Heterologous Regulators Limit Symbiotic Expression of the Rhizobium leguminosarum bv. Viciae Hydrogenase System in Hup − Rhizobia

Author:

Brito Belén1,Monza Jorge1,Imperial Juan12,Ruiz-Argüeso Tomás1,Palacios Jose Manuel1

Affiliation:

1. Laboratorio de Microbiologı́a, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid,1 and

2. Consejo Superior de Investigaciones Cientı́ficas,2 Ciudad Universitaria s/n, 28040 Madrid, Spain

Abstract

ABSTRACT A limited number of Rhizobium and Bradyrhizobium strains possess a hydrogen uptake (Hup) system that recycles the hydrogen released from the nitrogen fixation process in legume nodules. To extend this ability to rhizobia that nodulate agronomically important crops, we investigated factors that affect the expression of a cosmid-borne Hup system from Rhizobium leguminosarum bv. viciae UPM791 in R. leguminosarum bv. viciae, Rhizobium etli , Mesorhizobium loti , and Sinorhizobium meliloti Hup strains. After cosmid pAL618 carrying the entire hup system of strain UPM791 was introduced, all recipient strains acquired the ability to oxidize H 2 in symbioses with their hosts, although the levels of hydrogenase activity were found to be strain and species dependent. The levels of hydrogenase activity were correlated with the levels of nickel-dependent processing of the hydrogenase structural polypeptides and with transcription of structural genes. Expression of the NifA-dependent hupSL promoter varied depending on the genetic background, while the hyp operon, which is controlled by the FnrN transcriptional regulator, was expressed at similar levels in all recipient strains. With the exception of the R. etli -bean symbiosis, the availability of nickel to bacteroids strongly affected hydrogenase processing and activity in the systems tested. Our results indicate that efficient transcriptional activation by heterologous regulators and processing of the hydrogenase as a function of the availability of nickel to the bacteroid are relevant factors that affect hydrogenase expression in heterologous rhizobia.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3