Control of the Streptomyces Subtilisin Inhibitor Gene by AdpA in the A-Factor Regulatory Cascade in Streptomyces griseus

Author:

Hirano Setsu1,Kato Jun-ya1,Ohnishi Yasuo1,Horinouchi Sueharu1

Affiliation:

1. Department of Biotechnology, Graduate School of Agriculture and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan

Abstract

ABSTRACT AdpA in the A-factor regulatory cascade in Streptomyces griseus activates a number of genes required for secondary metabolism and morphological differentiation, forming an AdpA regulon. The Streptomyces subtilisin inhibitor (SSI) gene, sgiA , in S. griseus was transcribed in response to AdpA, showing that sgiA is a member of the AdpA regulon. AdpA bound a single site upstream of the sgiA promoter at approximately position −70 with respect to its transcriptional start point. Mutational analysis of the AdpA-binding site showed that the AdpA-binding site was essential for transcriptional activation. Mutants in which sgiA was disrupted had higher trypsin, chymotrypsin, metalloendopeptidase, and total protease activities than the wild-type strain, which showed that SgiA modulated the activities of these extracellularly produced proteases. Because a number of genes encoding chymotrypsins, trypsins, and metalloendopeptidases, most of which are SSI-sensitive proteases, are also under the control of AdpA, the A-factor regulatory cascade was thought to play a crucial role in modulating the extracellular protease activities by triggering simultaneous production of the proteases and their inhibitor at a specific timing during growth. Mutants in which sgiA was disrupted grew normally and formed aerial hyphae and spores with the same time course as the wild-type strain. However, exogenous addition of purified SgiA to substrate mycelium grown on agar medium resulted in a delay in aerial mycelium formation, indicating that SgiA is involved in aerial hypha formation in conjunction with proteases.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference44 articles.

1. Ando, N., K. Ueda, and S. Horinouchi. 1997. A Streptomyces griseus gene (sgaA) suppresses the growth disturbance caused by high osmolality and a high concentration of A-factor during early growth. Microbiology 143 : 2715-2723.

2. Cloning of DNA involved in sporulation of Streptomyces griseus

3. Braña, A. F., C. Méndez, L. A. Díaz, M. B. Manzanal, and C. Hardisson. 1986. Glycogen and trehalose accumulation during colony development in Streptomyces antibioticus. J. Gen. Microbiol. 132 : 1319-1326.

4. Chater, K. F., and S. Horinouchi. 2003. Signalling early developmental events in two highly diverged Streptomyces species. Mol. Microbiol. 48 : 9-15.

5. Horinouchi, S. 2002. A microbial hormone, A-factor, as a master switch for morphological differentiation and secondary metabolism in Streptomyces griseus. Front. Biosci. 7 : d2045-d2057.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3