Cumulative Impact of Host and Viral Factors on HIV-1 Viral-Load Control during Early Infection

Author:

Yue Ling1,Prentice Heather A.2,Farmer Paul1,Song Wei2,He Dongning2,Lakhi Shabir3,Goepfert Paul4,Gilmour Jill5,Allen Susan6,Tang Jianming4,Kaslow Richard A.2,Hunter Eric16

Affiliation:

1. Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA

2. Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA

3. Zambia-Emory HIV Research Project, Lusaka, Zambia

4. Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA

5. International AIDS Vaccine Initiative, London, England

6. Department of Pathology, Emory University, Atlanta, Georgia, USA

Abstract

ABSTRACT In HIV-1 infection, the early set-point viral load strongly predicts both viral transmission and disease progression. The factors responsible for the wide spectrum of set-point viral loads are complex and likely reflect an interplay between the transmitted virus and genetically defined factors in both the transmitting source partner and the seroconverter. Indeed, analysis of 195 transmission pairs from Lusaka, Zambia, revealed that the viral loads in transmitting source partners contributed only ∼2% of the variance in early set-point viral loads of seroconverters ( P = 0.046 by univariable analysis). In multivariable models, early set-point viral loads in seroconverting partners were a complex function of (i) the viral load in the source partner, (ii) the gender of the seroconverter, (iii) specific HLA class I alleles in the newly infected partner, and (iv) sharing of HLA-I alleles between partners in a transmission pair. Each of these factors significantly and independently contributed to the set-point viral load in the newly infected partner, accounting for up to 37% of the variance observed and suggesting that many factors operate in concert to define the early virological phenotype in HIV-1 infection.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3