Gonococci with mutations to low-level penicillin resistance exhibit increased sensitivity to the oxygen-independent bactericidal activity of human polymorphonuclear leukocyte granule extracts

Author:

Daly J A,Lee T J,Spitznagel J K,Sparling P F

Abstract

Gonococci which cause disseminated gonococcal infection are nearly always highly penicillin sensitive, in contrast to many isolates causing uncomplicated gonorrhea. We questioned whether any of the known chromosomal mutations to low-level penicillin resistance might adversely affect virulence. The penA2 locus is known to result in low-level resistance to penicillins, whereas mtr-2 results in nonspecific resistance to a variety of antimicrobial agents. We found that the penA2 and mtr-2 mutations each markedly increased sensitivity of strain FA19 to oxygen-independent killing by human polymorphonuclear leukocyte mixed or isolated azurophilic granule extracts. The penA2 and mtr-2 mutations had no effect on sensitivity to serum antibody and complement. Isogenic opaque or transparent variants of several strains of Neisseria gonorrhoeae were equally resistant to human polymorphonuclear leukocyte mixed granule extract bactericidal systems. There were also no differences in susceptibility of piliated type 1 and nonpiliated type 4 variants to human polymorphonuclear leukocyte mixed granule extracts. Since the penA2 and mtr-2 loci are known to increase the degree of cross-linking of cell wall peptidoglycan, the structure of peptidoglycan apparently affects sensitivity to killing by one or more polymorphonuclear leukocyte azurophilic granule extract bactericidal systems. These observations might explain why gonococci with mutations similar to penA2 and mtr-2 are almost never isolated from patients with disseminated gonococcal infection.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference32 articles.

1. Antigenspecific serotyping of Neisseria gonorrhoeae: characterization based upon principal outer membrane protein;Buchanan T. M.;Infect. Immun.,1981

2. Isolation of mononuclear cells and granulocytes from human blood: isolation of mononuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g;Beyum A.;Scand. J. Clin. Lab. Invest.,1968

3. Genetic locus (nmp-1) affecting the principal outer membrane protein of Neisseria gonorrhoeae;Cannon J. G.;J. Bacteriol.,1980

4. Gonococcal interactions with polymorphonuclear neutrophils: importance of the phagosome for bactericidal activity;Densen P.;J. Clin. Invest.,1978

5. Penicillin-binding proteins of penicillin-susceptible and intrinsically resistant Neisseria gonorrhoeae;Dougherty T. J.;Antimicrob. Agents Chemother.,1980

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3