Synthesis and turnover of mitochondrial ribonucleic acid in HeLa cells: the mature ribosomal and messenger ribonucleic acid species are metabolically unstable

Author:

Gelfand R1,Attardi G1

Affiliation:

1. Division of Biology, California Institute of Technology, Pasadena 91125.

Abstract

The synthesis rates and half-lives of the individual mitochondrial ribosomal ribonucleic acid (RNA) and polyadenylic acid-containing RNA species in HeLa cells have been determined by analyzing their kinetics of labeling with [5-3H]-uridine and the changes in specific activity of the mitochondrial nucleotide precursor pools. In one experiment, a novel method for determining the nucleotide precursor pool specific activities, using nascent RNA chains, has been utilized. All mitochondrial RNA species analyzed were found to be metabolically unstable, with half-lives of 2.5 to 3.5 h for the two ribosomal RNA components and between 25 and 90 min for the various putative messenger RNAs. A cordycepin "chase" experiment yielded half-life values for the messenger RNA species which were, in general, larger by a factor of 1.5 to 2.5 than those estimated in the labeling kinetics experiments. On the basis of previous observations, a model is proposed whereby the rate of mitochondrial RNA decay is under feedback control by some mechanism linked to RNA synthesis or processing. A short half-life was determined for five large polyadenylated RNAs, which are probably precursors of mature species. A rate of synthesis of one to two molecules per minute per cell was estimated for the various H-strand-coded messenger RNA species, and a rate of synthesis 50 to 100 times higher was estimated for the ribosomal RNA species. These data indicate that the major portion of the H-strand in each mitochondrial deoxyribonucleic acid molecule is transcribed very infrequently, possibly as rarely as once or twice per cell generation. Furthermore, these results are consistent with a previously proposed model of H-strand transcription in the form of a single polycistronic molecule.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3