An evaluation of the sporicidal activity of ozone

Author:

Rickloff J R

Abstract

This study was undertaken to determine the feasibility of sterilizing surfaces with ozone-saturated water by the methods of the Association of Official Analytical Chemists (AOAC). Initially, it was determined that there was no apparent difference in ozone resistance between spores of Bacillus subtilis and Clostridium sporogenes when they are suspended in water. Both species were inactivated by a 10-min exposure at ambient temperature. Resistance was increased when the spores were dried on AOAC carriers. Viable organisms were recovered after an exposure of 40 min at ambient temperature. An increase in the reactor water temperature to 60 degrees C did not improve the effectiveness of the ozone in sterilizing AOAC carriers. Dried spores of C. sporogenes were more resistant than B. subtilis spores because of a greater accumulation of organic matter on the carriers. No significant sporicidal activity was demonstrated after 40 min for spores of either species when they were inoculated on silk suture loops. The data suggest that organic loading and poor ozone penetrability are key factors in effecting the ability of ozone to sterilize surfaces rapidly.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference16 articles.

1. Sensitivity of three selected bacterial species to ozone;Broadwater W. T.;Appl. Microbiol.,1973

2. Inactivation of viruses and bacteria by ozone, with and without sonication;Burleson G. R.;Appl. Microbiol.,1975

3. Physicochemical aspects of disinfection of water by means of ultrasound and ozone;Dahi E.;Water Res.,1976

4. Action of ozone on water-borne bacteria;Dickerman J. M.;J. N. Engl. Water Works Assoc.,1954

5. Influence of temperature and U.V. light on disinfection with ozone;Farooq S.;Water Res.,1976

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3