Global assembly of microbial communities

Author:

Wang Jianing1ORCID,Pan Zhuo1,Yu Jianshui1,Zhang Zheng1ORCID,Li Yue-zhong1ORCID

Affiliation:

1. State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University , Qingdao, China

Abstract

ABSTRACT Different habitats harbor different microbial communities with elusive assembly mechanisms. This study comprehensively investigated the global assembly mechanisms of microbial communities and effects of community-internal influencing factors using the Earth Microbiome Project (EMP) data set. We found that deterministic and stochastic processes contribute approximately equally to global microbial community assembly, and, specifically, deterministic processes generally play a major role in free-living and plant-associated (but not plant corpus) environments, while stochastic processes are the major contributor in animal-associated environments. In contrast with the assembly of microorganisms, the assembly of functional genes, predicted from PICRUSt, is mainly attributed to deterministic processes in all microbial communities. The sink and source microbial communities are normally assembled using similar mechanisms, and the core microorganisms are specific to different environment types. On a global scale, deterministic processes are positively related to the community alpha diversity, microbial interaction degree and bacterial predatory-specific gene abundance. Our analysis provides a panoramic picture and regularities of global and environment-typical microbial community assemblies. IMPORTANCE With the development of sequencing technologies, the research topic of microbial ecology has evolved from the analysis of community composition to community assembly, including the relative contribution of deterministic and stochastic processes for the formation and maintenance of community diversity. Many studies have reported the microbial assembly mechanisms in various habitats, but the assembly regularities of global microbial communities remain unknown. In this study, we analyzed the EMP data set using a combined pipeline to explore the assembly mechanisms of global microbial communities, microbial sources to construct communities, core microbes in different environment types, and community-internal factors influencing assembly. The results provide a panoramic picture and rules of global and environment-typical microbial community assemblies, which enhances our understandings of the mechanisms globally controlling community diversity and species coexistence.

Funder

National Natural Science Foundation of China

MOST | National Key Research and Development Program of China

Science Foundation for Youths of Shandong Province

China Postdoctoral Science Foundation

Postdoctoral Innovation Project of Shandong Province

Publisher

American Society for Microbiology

Subject

Computer Science Applications,Genetics,Molecular Biology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics,Biochemistry,Physiology,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3