Predicting Influenza A Virus Infection in the Lung from Hematological Data with Machine Learning

Author:

Jhutty Suneet Singh12,Boehme Julia D.34,Jeron Andreas34,Volckmar Julia34,Schultz Kristin35,Schreiber Jens6,Schughart Klaus578,Zhou Kai1,Steinheimer Jan1,Stöcker Horst1910,Stegemann-Koniszewski Sabine6,Bruder Dunja34,Hernandez-Vargas Esteban A.11112

Affiliation:

1. Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany

2. Faculty of Biological Sciences, Goethe University, Frankfurt am Main, Germany

3. Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany

4. Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany

5. Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany

6. Department of Pneumology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany

7. Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA

8. University of Veterinary Medicine Hannover, Hannover, Germany

9. Institut für Theoretische Physik, Goethe Universität Frankfurt, Frankfurt am Main, Germany

10. GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany

11. Department of Mathematics and Statistical Science, University of Idaho, Moscow, Idaho, USA

12. Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, USA

Abstract

During the course of respiratory infections such as influenza, we do have a very limited view of immunological indicators to objectively and quantitatively evaluate the outcome of a host. Methods for monitoring immunological markers in a host’s lungs are invasive and expensive, and some of them are not feasible to perform.

Funder

Deutsche Forschungsgemeinschaft

Publisher

American Society for Microbiology

Subject

Computer Science Applications,Genetics,Molecular Biology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics,Biochemistry,Physiology,Microbiology

Reference55 articles.

1. WHO. 2018. Influenza (seasonal) factsheet. https://www.who.int/en/news-room/fact-sheets/detail/influenza-(seasonal). Accessed 25 June 2020.

2. WHO. 2019. WHO recommended surveillance standards, 2nd ed. WHO, Geneva, Switzerland.

3. Influenza Pandemics of the 20th Century

4. Clinical Aspects of Pandemic 2009 Influenza A (H1N1) Virus Infection

5. In vivo Neutralization of Pro-inflammatory Cytokines During Secondary Streptococcus pneumoniae Infection Post Influenza A Virus Infection

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3