Spatial organization and proteome of a dual-species cyanobacterial biofilm alter among N 2 -fixing and non-fixing conditions

Author:

Bozan Mahir1,Schmidt Matthias2,Musat Niculina2,Schmid Andreas1,Adrian Lorenz3,Bühler Katja3ORCID

Affiliation:

1. Department of Solar Materials, Helmholtz-Centre for Environmental Research (UFZ) , Leipzig, Germany

2. Department of Isotope Biogeochemistry, Helmholtz-Centre for Environmental Research (UFZ) , Leipzig, Germany

3. Department of Environmental Biotechnology, Helmholtz-Centre for Environmental Research (UFZ) , Leipzig, Germany

Abstract

ABSTRACT Many disciplines have become increasingly interested in cyanobacteria, due to their ability to fix CO 2 while using water and sunlight as electron and energy sources. Further, several species of cyanobacteria are also capable of fixing molecular nitrogen, making them independent of the addition of nitrate or ammonia. Thereby they hold huge potential as sustainable biocatalysts. Here, we look into a dual-species biofilm consisting of filamentous diazotrophic cyanobacteria Tolypothrix sp. PCC 7712 and heterotrophic bacteria Pseudomonas taiwanensis VLB 120 growing in a capillary biofilm reactor. Such systems have been reported to enable high cell densities continuous process operation. By combining confocal laser scanning and helium-ion microscopy with a proteomics approach, we examined these organisms’ interactions under two nitrogen-feeding strategies: N 2 -fixing and nitrate assimilation. Not only did Pseudomonas facilitate the biofilm formation by forming a carpet layer on the surface area but also did N 2 -fixing biofilms show greater attachment to the surface. Pseudomonas proteins related to surface and cell attachments were observed in N 2 -fixing biofilms in particular. Furthermore, co-localized biofilm cells displayed a resilient response to extra shear forces induced by segmented media/air flows. This study highlights the role of Pseudomonas in the initial attachment process, as well as the effects of different nitrogen-feeding strategies and operation regimes on biofilm composition and growth. IMPORTANCE Cyanobacteria are highly interesting microorganisms due to their ability to synthesize sugars from CO 2 while using water and sunlight as electron and energy sources. Further, many species are also capable of utilizing molecular nitrogen, making them independent of artificial fertilizers. In this study, such organisms are cultivated in a technical system, which enables them to attach to the reactor surface, and form three-dimensional structures termed biofilms. Biofilms achieve extraordinarily high cell densities. Furthermore, this growth format allows for continuous processing, both being essential features in biotechnological process development. Understanding biofilm growth and the influence technical settings and media composition have on biofilm maturation and stability are crucial for reaction and reactor design. These findings will help to open up these fascinating organisms for applications as sustainable, resource-efficient industrial workhorses.

Publisher

American Society for Microbiology

Subject

Computer Science Applications,Genetics,Molecular Biology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics,Biochemistry,Physiology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3