Ecological differences among hydrothermal vent symbioses may drive contrasting patterns of symbiont population differentiation

Author:

Breusing Corinna1ORCID,Xiao Yao23,Russell Shelbi L.4,Corbett-Detig Russell B.4,Li Sixuan1,Sun Jin5,Chen Chong6,Lan Yi23,Qian Pei-Yuan23ORCID,Beinart Roxanne A.1ORCID

Affiliation:

1. Graduate School of Oceanography, University of Rhode Island , Narragansett, Rhode Island, USA

2. Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology , Hong Kong, China

3. The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) , Nansha, Guangzhou, China

4. Department of Biomolecular Engineering, University of California Santa Cruz , Santa Cruz, California, USA

5. Institute of Evolution & Marine Biodiversity, Ocean University of China , Qingdao, China

6. X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC) , Yokosuka, Japan

Abstract

ABSTRACT The intra-host composition of horizontally transmitted microbial symbionts can vary across host populations due to interactive effects of host genetics, environmental, and geographic factors. While adaptation to local habitat conditions can drive geographic subdivision of symbiont strains, it is unknown how differences in ecological characteristics among host-symbiont associations influence the genomic structure of symbiont populations. To address this question, we sequenced metagenomes of different populations of the deep-sea mussel Bathymodiolus septemdierum , which are common at Western Pacific deep-sea hydrothermal vents and show characteristic patterns of niche partitioning with sympatric gastropod symbioses. Bathymodiolus septemdierum lives in close symbiotic relationship with sulfur-oxidizing chemosynthetic bacteria but supplements its symbiotrophic diet through filter-feeding, enabling it to occupy ecological niches with little exposure to geochemical reductants. Our analyses indicate that symbiont populations associated with B. septemdierum show structuring by geographic location, but that the dominant symbiont strain is uncorrelated with vent site. These patterns are in contrast to co-occurring Alviniconcha and Ifremeria gastropod symbioses that exhibit greater symbiont nutritional dependence and occupy habitats with higher spatial variability in environmental conditions. Our results suggest that relative habitat homogeneity combined with sufficient symbiont dispersal and genomic mixing might promote persistence of similar symbiont strains across geographic locations, while mixotrophy might decrease selective pressures on the host to affiliate with locally adapted symbiont strains. Overall, these data contribute to our understanding of the potential mechanisms influencing symbiont population structure across a spectrum of marine microbial symbioses that occupy contrasting ecological niches. IMPORTANCE Beneficial relationships between animals and microbial organisms (symbionts) are ubiquitous in nature. In the ocean, microbial symbionts are typically acquired from the environment and their composition across geographic locations is often shaped by adaptation to local habitat conditions. However, it is currently unknown how generalizable these patterns are across symbiotic systems that have contrasting ecological characteristics. To address this question, we compared symbiont population structure between deep-sea hydrothermal vent mussels and co-occurring but ecologically distinct snail species. Our analyses show that mussel symbiont populations are less partitioned by geography and do not demonstrate evidence for environmental adaptation. We posit that the mussel's mixotrophic feeding mode may lower its need to affiliate with locally adapted symbiont strains, while microhabitat stability and symbiont genomic mixing likely favors persistence of symbiont strains across geographic locations. Altogether, these findings further our understanding of the mechanisms shaping symbiont population structure in marine environmentally transmitted symbioses.

Funder

Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)

General Research Fund of Hong Kong SAR

National Science Foundation

HHS | National Institutes of Health

Publisher

American Society for Microbiology

Subject

Computer Science Applications,Genetics,Molecular Biology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics,Biochemistry,Physiology,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3