Model-guided metabolic rewiring to bypass pyruvate oxidation for pyruvate derivative synthesis by minimizing carbon loss

Author:

Zhang Yun1ORCID,Wang Xueliang12ORCID,Odesanmi Christianah12,Hu Qitiao12,Li Dandan1,Tang Yuan12,Liu Zhe12,Mi Jie12,Liu Shuwen1,Wen Tingyi13ORCID

Affiliation:

1. State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China

2. College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China

3. Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China

Abstract

ABSTRACT Engineering microbial hosts to synthesize pyruvate derivatives depends on blocking pyruvate oxidation, thereby causing severe growth defects in aerobic glucose-based bioprocesses. To decouple pyruvate metabolism from cell growth to improve pyruvate availability, a genome-scale metabolic model combined with constraint-based flux balance analysis, geometric flux balance analysis, and flux variable analysis was used to identify genetic targets for strain design. Using translation elements from a ~3,000 cistronic library to modulate fxpK expression in a bicistronic cassette, a bifido shunt pathway was introduced to generate three molecules of non-pyruvate-derived acetyl-CoA from one molecule of glucose, bypassing pyruvate oxidation and carbon dioxide generation. The dynamic control of flux distribution by T7 RNAP-mediated synthetic small RNA decoupled pyruvate catabolism from cell growth. Adaptive laboratory evolution and multi-omics analysis revealed that a mutated isocitrate dehydrogenase functioned as a metabolic switch to activate the glyoxylate shunt as the only C4 anaplerotic pathway to generate malate from two molecules of acetyl-CoA input and bypass two decarboxylation reactions in the tricarboxylic acid cycle. A chassis strain for pyruvate derivative synthesis was constructed to reduce carbon loss by using the glyoxylate shunt as the only C4 anaplerotic pathway and the bifido shunt as a non-pyruvate-derived acetyl-CoA synthetic pathway and produced 22.46, 27.62, and 6.28 g/L of l -leucine, l -alanine, and l -valine by a controlled small RNA switch, respectively. Our study establishes a novel metabolic pattern of glucose-grown bacteria to minimize carbon loss under aerobic conditions and provides valuable insights into cell design for manufacturing pyruvate-derived products. IMPORTANCE Bio-manufacturing from biomass-derived carbon sources using microbes as a cell factory provides an eco-friendly alternative to petrochemical-based processes. Pyruvate serves as a crucial building block for the biosynthesis of industrial chemicals; however, it is different to improve pyruvate availability in vivo due to the coupling of pyruvate-derived acetyl-CoA with microbial growth and energy metabolism via the oxidative tricarboxylic acid cycle. A genome-scale metabolic model combined with three algorithm analyses was used for strain design. Carbon metabolism was reprogrammed using two genetic control tools to fine-tune gene expression. Adaptive laboratory evolution and multi-omics analysis screened the growth-related regulatory targets beyond rational design. A novel metabolic pattern of glucose-grown bacteria is established to maintain growth fitness and minimize carbon loss under aerobic conditions for the synthesis of pyruvate-derived products. This study provides valuable insights into the design of a microbial cell factory for synthetic biology to produce industrial bio-products of interest.

Funder

MOST | National Natural Science Foundation of China

MOST | National Key Research and Development Program of China

Publisher

American Society for Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3