Genetic and Transcriptional Analysis of Human Host Response to Healthy Gut Microbiota

Author:

Richards Allison L.1,Burns Michael B.23,Alazizi Adnan1,Barreiro Luis B.4,Pique-Regi Roger15,Blekhman Ran23,Luca Francesca15ORCID

Affiliation:

1. Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA

2. Department of Genetics, Cell Biology, and Development, The University of Minnesota, Minneapolis, Minnesota, USA

3. Department of Ecology, Evolution, and Behavior, The University of Minnesota, Minneapolis, Minnesota, USA

4. Department of Pediatrics, Sainte-Justine Hospital Research Centre, University of Montréal, Montreal, Québec, Canada

5. Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, USA

Abstract

The study of host-microbiota interactions in humans is largely limited to identifying associations between microbial communities and host phenotypes. While these studies have generated important insights on the links between the microbiota and human disease, the assessment of cause-and-effect relationships has been challenging. Although this relationship can be studied in germfree mice, this system is costly, and it is difficult to accurately account for the effects of host genotypic variation and environmental effects seen in humans. Here, we have developed a novel approach to directly investigate the transcriptional changes induced by live microbial communities on human colonic epithelial cells and how these changes are modulated by host genotype. This method is easily scalable to large numbers of host genetic backgrounds and diverse microbiota and can be utilized to elucidate the mechanisms of host-microbiota interactions. Future extensions may also include colonic organoid cultures.

Funder

The Randy Shaver Cancer Research and Community Fund

HHS | NIH | National Institute of General Medical Sciences

American Cancer Society

Publisher

American Society for Microbiology

Subject

Computer Science Applications,Genetics,Molecular Biology,Modelling and Simulation,Ecology, Evolution, Behavior and Systematics,Biochemistry,Physiology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3