Integrative conjugative elements mediate the high prevalence of tmexCD3-toprJ1b in Proteus spp. of animal source

Author:

Peng Kai1ORCID,Li Yangfan1,Wang Qiaojun1,Yang Pengbin1,Wang Zhiqiang12,Li Ruichao13

Affiliation:

1. Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University , Yangzhou, Jiangsu, China

2. Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University , Yangzhou, Jiangsu, China

3. Institute of Comparative Medicine, Yangzhou University , Yangzhou, Jiangsu, China

Abstract

ABSTRACT Integrative conjugative elements (ICEs) are important mobile elements that are associated with the dissemination of antibiotic resistance genes (ARGs) in Proteus . Recent studies demonstrated that the tigecycline resistance gene cluster tmexCD-toprJ has emerged in ICEs of Proteus . However, the prevalence of tmexCD-toprJ positive Proteus from animal sources is unclear. To cover the gap, a total of 762 Proteus spp. were isolated from animal source from six provinces of China to identify the tmexCD-toprJ positive isolates. Eight tmexCD-toprJ positive isolates were identified, with the tmexCD-toprJ positive rate of 1.05% against all Proteus spp. and 2.79% against ICE-bearing Proteus spp. The tmexCD-toprJ gene cluster in these Proteus spp. were tmexCD3-toprJ1b and all of them were carried by ICEs. Genetic structure analysis showed that tmexCD3-toprJ1b -bearing ICEs were complicated and plastic, but the tmexCD3-toprJ1b was specifically integrated into variable region III (VRIII) of ICEs with the help of integrases. Furthermore, we found that the umuC gene, which is presented in VRIII of ICEs and other genetic structures of many other bacterial genomes, was a hotspot for the integration of tmexCD-toprJ -bearing potential mobile elements. In summary, our results suggested that Proteus were important reservoirs for tmexCD-toprJ due to the high prevalence of ICEs. Therefore, continuous surveillance of ICEs-associated ARGs in Proteus is necessary and significant for controlling their future transmission. IMPORTANCE The emergence and spread of tmexCD-toprJ have greatly weakened the function of tigecycline. Although studies have demonstrated the significance of Proteus as carriers for tmexCD-toprJ , the epidemic mechanism and characteristics of tmexCD-toprJ in Proteus remain unclear. Herein, we deciphered that the umuC gene in VRIII of SXT/R391 ICEs was a hotspot for the integration of tmexCD3-toprJ1b -bearing mobile genetic elements by genomic analysis. The mobilization and dissemination of tmexCD3-toprJ1b in Proteus were mediated by highly prevalent ICEs. Furthermore, the co-occurrence of tmexCD3-toprJ1b -bearing ICEs with other chromosomally encoded multidrug resistance gene islands warned that the chromosomes of Proteus are significant reservoirs of ARGs. Overall, our results provide significant insights for the prevention and control of tmexCD3-toprJ1b in Proteus .

Funder

MOST | National Natural Science Foundation of China

Jiangsu Agricultural Science and Technology Innovation Fund

Publisher

American Society for Microbiology

Subject

Computer Science Applications,Genetics,Molecular Biology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics,Biochemistry,Physiology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3