Rocket-miR, a translational launchpad for miRNA-based antimicrobial drug development

Author:

Neff Samuel L.1ORCID,Hampton Thomas H.1ORCID,Koeppen Katja1ORCID,Sarkar Sharanya1,Latario Casey J.1,Ross Benjamin D.1,Stanton Bruce A.1ORCID

Affiliation:

1. Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA

Abstract

ABSTRACT Developing software tools that leverage biological data sets to accelerate drug discovery is an important aspect of bioinformatic research. Here, we present a novel example: a web application called Rocket-miR that applies an existing bioinformatic algorithm (IntaRNA) to predict cross-species miRNA-mRNA interactions and identify human miRNAs with potential antimicrobial activity against antibiotic-resistant bacterial infections. Rocket-miR is the logical extension of our prior finding that human miRNA let-7b-5p impairs the ability of the ubiquitous opportunistic pathogen Pseudomonas aeruginosa to form biofilms and resist the bactericidal effect of β-lactam antibiotics. Rocket-miR’s point and click interface enables researchers without programming expertise to predict additional human-miRNA-pathogen interactions. Identified miRNAs can be developed into novel antimicrobials effective against the 24 clinically relevant pathogens, implicated in diseases of the lung, gut, and other organs, that are included in the application. The paper incorporates three case studies contributed by microbiologists that study human pathogens to demonstrate the usefulness and usability of the application. Rocket-miR is accessible at the following link: http://scangeo.dartmouth.edu/RocketmiR/ . IMPORTANCE Antimicrobial-resistant infections contribute to millions of deaths worldwide every year. In particular, the group of bacteria collectively known as ESKAPE ( Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter sp . ) pathogens are of considerable medical concern due to their virulence and exceptional ability to develop antibiotic resistance. New kinds of antimicrobial therapies are urgently needed to treat patients for whom existing antibiotics are ineffective. The Rocket-miR application predicts targets of human miRNAs in bacterial and fungal pathogens, rapidly identifying candidate miRNA-based antimicrobials. The application’s target audience are microbiologists that have the laboratory resources to test the application’s predictions. The Rocket-miR application currently supports 24 recognized human pathogens that are relevant to numerous diseases including cystic fibrosis, chronic obstructive pulmonary disease (COPD), urinary tract infections, and pneumonia. Furthermore, the application code was designed to be easily extendible to other human pathogens that commonly cause hospital-acquired infections.

Funder

Cystic Fibrosis Foundation

HHS | National Institutes of Health

The Flatley Foundation

Publisher

American Society for Microbiology

Subject

Computer Science Applications,Genetics,Molecular Biology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics,Biochemistry,Physiology,Microbiology

Reference132 articles.

1. What Exactly is Antibiotic Resistance?;CDC;Centers for Disease Control and Prevention,2022

2. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis

3. Stemming the Superbug tide: Just A few dollars more | en | OECD. 2022. Available from: https://www.oecd.org/health/stemming-the-superbug-tide-9789264307599-en.htm

4. Lack of innovation set to undermine antibiotic performance and health gains. 2023. Available from: https://www.who.int/news/item/22-06-2022-22-06-2022-lack-of-innovation-set-to-undermine-antibiotic-performance-and-health-gains

5. Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3