The hallmarks of a tradeoff in transcriptomes that balances stress and growth functions

Author:

Dalldorf Christopher1ORCID,Rychel Kevin1,Szubin Richard1,Hefner Ying1,Patel Arjun1,Zielinski Daniel C.1,Palsson Bernhard O.12345ORCID

Affiliation:

1. Department of Bioengineering, University of California San Diego, La Jolla, USA

2. Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, USA

3. Department of Pediatrics, University of California San Diego, La Jolla, California, USA

4. Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA

5. Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark

Abstract

ABSTRACT Fast growth phenotypes are achieved through optimal transcriptomic allocation, in which cells must balance tradeoffs in resource allocation between diverse functions. One such balance between stress readiness and unbridled growth in E. coli has been termed the fear versus greed (f/g) tradeoff. Two specific RNA polymerase (RNAP) mutations observed in adaptation to fast growth have been previously shown to affect the f/g tradeoff, suggesting that genetic adaptations may be primed to control f/g resource allocation. Here, we conduct a greatly expanded study of the genetic control of the f/g tradeoff across diverse conditions. We introduced 12 RNA polymerase (RNAP) mutations commonly acquired during adaptive laboratory evolution (ALE) and obtained expression profiles of each. We found that these single RNAP mutation strains resulted in large shifts in the f/g tradeoff primarily in the RpoS regulon and ribosomal genes, likely through modifying RNAP-DNA interactions. Two of these mutations additionally caused condition-specific transcriptional adaptations. While this tradeoff was previously characterized by the RpoS regulon and ribosomal expression, we find that the GAD regulon plays an important role in stress readiness and ppGpp in translation activity, expanding the scope of the tradeoff. A phylogenetic analysis found the greed-related genes of the tradeoff present in numerous bacterial species. The results suggest that the f/g tradeoff represents a general principle of transcriptome allocation in bacteria where small genetic changes can result in large phenotypic adaptations to growth conditions. IMPORTANCE To increase growth, E. coli must raise ribosomal content at the expense of non-growth functions. Previous studies have linked RNAP mutations to this transcriptional shift and increased growth but were focused on only two mutations found in the protein’s central region. RNAP mutations, however, commonly occur over a large structural range. To explore RNAP mutations’ impact, we have introduced 12 RNAP mutations found in laboratory evolution experiments and obtained expression profiles of each. The mutations nearly universally increased growth rates by adjusting said tradeoff away from non-growth functions. In addition to this shift, a few caused condition-specific adaptations. We explored the prevalence of this tradeoff across phylogeny and found it to be a widespread and conserved trend among bacteria.

Funder

Novo Nordisk Fonden

HHS | NIH | OSC | Common Fund

Y.C. Fung Endowed Chair at UCSD

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3