Formation of a constructed microbial community in a nutrient-rich environment indicates bacterial interspecific competition

Author:

Wang Jia1ORCID,Appidi Manasa R.12,Burdick Leah H.1,Abraham Paul E.1ORCID,Hettich Robert L.1,Pelletier Dale A.1ORCID,Doktycz Mitchel J.1ORCID

Affiliation:

1. Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

2. UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee, USA

Abstract

ABSTRACT Understanding the organizational principles of microbial communities is essential for interpreting ecosystem stability. Previous studies have investigated the formation of bacterial communities under nutrient-poor conditions or obligate relationships to observe cooperative interactions among different species. How microorganisms form stabilized communities in nutrient-rich environments, without obligate metabolic interdependency for growth, is still not fully disclosed. In this study, three bacterial strains isolated from the Populus deltoides rhizosphere were co-cultured in complex medium, and their growth behavior was tracked. These strains co-exist in mixed culture over serial transfer for multiple growth-dilution cycles. Competition is proposed as an emergent interaction relationship among the three bacteria based on their significantly decreased growth levels. The effects of different initial inoculum ratios, up to three orders of magnitude, on community structure were investigated, and the final compositions of the mixed communities with various starting composition indicate that community structure is not dependent on the initial inoculum ratio. Furthermore, the competitive relationships within the community were not altered by different initial inoculum ratios. The community structure was simulated by generalized Lotka-Volterra and dynamic flux balance analysis to provide mechanistic predictions into emergence of community structure under a nutrient-rich environment. Metaproteomic analyses provide support for the metabolite exchanges predicted by computational modeling and for highly altered physiologies when microbes are grown in co-culture. These findings broaden our understanding of bacterial community dynamics and metabolic diversity in higher-order interactions and could be significant in the management of rhizospheric bacterial communities. IMPORTANCE Bacteria naturally co-exist in multispecies consortia, and the ability to engineer such systems can be useful in biotechnology. Despite this, few studies have been performed to understand how bacteria form a stable community and interact with each other under nutrient-rich conditions. In this study, we investigated the effects of initial inoculum ratios on bacterial community structure using a complex medium and found that the initial inoculum ratio has no significant impact on resultant community structure or on interaction patterns between community members. The microbial population profiles were simulated using computational tools in order to understand intermicrobial relationships and to identify potential metabolic exchanges that occur during stabilization of the bacterial community. Studying microbial community assembly processes is essential for understanding fundamental ecological principles in microbial ecosystems and can be critical in predicting microbial community structure and function.

Funder

U.S. Department of Energy

Publisher

American Society for Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3