The Entner-Doudoroff and Nonoxidative Pentose Phosphate Pathways Bypass Glycolysis and the Oxidative Pentose Phosphate Pathway in Ralstonia solanacearum

Author:

Jyoti Poonam1,Shree Manu1,Joshi Chandrakant1,Prakash Tulika1,Ray Suvendra Kumar2,Satapathy Siddhartha Sankar3,Masakapalli Shyam Kumar1

Affiliation:

1. BioX Center, School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, India

2. Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India

3. Department of Computer Science & Engineering, Tezpur University, Tezpur, Assam, India

Abstract

Understanding the metabolic versatility of Ralstonia solanacearum is important, as it regulates the trade-off between virulence and metabolism (1, 2) in a wide range of plant hosts. Due to a lack of clear evidence until this work, several published research papers reported on the potential roles of glycolysis and the oxidative pentose phosphate pathway (OxPPP) in R. solanacearum (3, 4). This work provided evidence from 13 C stable isotope feeding and genome annotation-based comparative metabolic network analysis that the Entner-Doudoroff pathway and non-OxPPP bypass glycolysis and OxPPP during the oxidation of glucose, a component of the host xylem pool that serves as a potential carbon source (5). The outcomes help better define the central carbon metabolic network of R. solanacearum that can be integrated with 13 C metabolic flux analysis as well as flux balance analysis studies for defining the metabolic phenotypes. The study highlights the need to critically examine phytopathogens whose metabolism is poorly understood.

Funder

Department of Biotechnology, Ministry of Science and Technology, India

Publisher

American Society for Microbiology

Subject

Computer Science Applications,Genetics,Molecular Biology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics,Biochemistry,Physiology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3