Biofilm Structure Promotes Coexistence of Phage-Resistant and Phage-Susceptible Bacteria

Author:

Simmons Emilia L.1,Bond Matthew C.1,Koskella Britt2,Drescher Knut34ORCID,Bucci Vanni5,Nadell Carey D.1ORCID

Affiliation:

1. Department of Biological Sciences, Dartmouth, Hanover, New Hampshire, USA

2. Department of Integrative Biology, University of California, Berkeley, Berkeley, California, USA

3. Max Planck Institute for Terrestrial Microbiology, Marburg, Germany

4. Department of Physics, Philipps-Universität Marburg, Marburg, Germany

5. Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA

Abstract

In the natural environment, bacteria most often live in communities bound to one another by secreted adhesives. These communities, or biofilms, play a central role in biogeochemical cycling, microbiome functioning, wastewater treatment, and disease. Wherever there are bacteria, there are also viruses that attack them, called phages. Interactions between bacteria and phages are likely to occur ubiquitously in biofilms. We show here, using simulations and experiments, that biofilms will in most conditions allow phage-susceptible bacteria to be protected from phage exposure, if they are growing alongside other cells that are phage resistant. This result has implications for the fundamental ecology of phage-bacteria interactions, as well as the development of phage-based antimicrobial therapeutics.

Publisher

American Society for Microbiology

Subject

Computer Science Applications,Genetics,Molecular Biology,Modelling and Simulation,Ecology, Evolution, Behavior and Systematics,Biochemistry,Physiology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3