Sequence similarity network and protein structure prediction offer insights into the evolution of microbial pathways for ferrous iron oxidation

Author:

Li Liangzhi12ORCID,Liu Zhenghua12,Meng Delong12,Liu Yongjun3,Liu Tianbo3,Jiang Chengying45,Yin Huaqun12ORCID

Affiliation:

1. School of Minerals Processing and Bioengineering, Central South University , Changsha, China

2. Key Laboratory of Biometallurgy of Ministry of Education, Central South University , Changsha, China

3. Hunan Tobacco Science Institute , Changsha, China

4. University of Chinese Academy of Sciences , Beijing, China

5. State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences , Beijing, China

Abstract

ABSTRACT Dissimilatory ferrous iron [Fe(II)] oxidation is a well-established microbial energy generation strategy. This study aims to comprehensively investigate the distribution and evolution of recognized Fe(II) oxidation pathways through comparative analysis. Interestingly, we have discovered a wide range of taxonomic groups that harbor homologs to known Fe(II) oxidation proteins. The presence of these homologs among phylogenetically distant lineages and their frequent association with mobile genetic elements strongly suggest horizontal gene transfer events involving Fe(II) oxidation proteins, such as the rus operon of Acidithiobacillus and Cyc572 from Leptospirillum lineages belonging to classes Gammaproteobacteria and Betaproteobacteria often present at the hub positions of the protein sequence similarity networks from which homologs of other taxa are derived. In addition, RoseTTAFold predictions have provided valuable insights into the structural characteristics of previously unknown Fe(II) oxidation components. Despite having limited sequence identity, a significant number of acknowledged proteins involved in different Fe(II) oxidation pathways exhibit close structural similarities, including Cyc2 and Cyc572. Collectively, this study significantly enhances our understanding of the distribution and evolution of microbial ferrous iron oxidation pathways. IMPORTANCE Microbial Fe(II) oxidation is a crucial process that harnesses and converts the energy available in Fe, contributing significantly to global element cycling. However, there are still many aspects of this process that remain unexplored. In this study, we utilized a combination of comparative genomics, sequence similarity network analysis, and artificial intelligence-driven structure modeling methods to address the lack of structural information on Fe(II) oxidation proteins and offer a comprehensive perspective on the evolution of Fe(II) oxidation pathways. Our findings suggest that several microbial Fe(II) oxidation pathways currently known may have originated within classes Gammaproteobacteria and Betaproteobacteria .

Funder

KEY RESEARCH AND DEVELOPMENT OF HUNAN PROVINCE, CHINA

Publisher

American Society for Microbiology

Subject

Computer Science Applications,Genetics,Molecular Biology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics,Biochemistry,Physiology,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3