Natural product biosynthetic potential reflects macroevolutionary diversification within a widely distributed bacterial taxon

Author:

Silva Sandra Godinho12ORCID,Nabhan Homsi Masun3ORCID,Keller-Costa Tina12ORCID,Rocha Ulisses4ORCID,Costa Rodrigo12ORCID

Affiliation:

1. Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal

2. iBB–Institute for Bioengineering and Biosciences and i4HB–Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal

3. Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research–UFZ, Leipzig, Germany

4. Department of Environmental Microbiology, Helmholtz Centre for Environmental Research–UFZ, Leipzig, Germany

Abstract

ABSTRACT Flavobacteriaceae spp. are key players in global biogeochemical cycling and are known for their versatile carbohydrate and peptide catabolism. However, it is currently unknown whether secondary metabolism traits underlie their broad range of occurrence across the earth’s biomes. We examined 2,680 genomes to unveil an unprecedented phylogenetic signal dictating natural product biosynthesis diversification within the Flavobacteriaceae family. The distribution of secondary metabolite biosynthetic gene clusters (BGCs) across genomes usually follows macroevolutionary, genus-specific patterns. Noticeably, 88.6% of the observed BGCs were inferred to lead to the biosynthesis of likely novel natural products. We found an unanticipated, large diversity of taxon-specific BGCs encoding carotenoid and flexirubin pigments, the vast majority of which awaiting formal description. In particular, Aquimarina and Kordia spp. possessed large genomes, versatile catabolic traits, and a repertoire of BGCs possibly encoding drug-inspiring polyketides, non-ribosomal peptides, or post-translationally modified peptides. Using a machine learning approach (feature selection), we reveal that marine and non-marine Flavobacteriaceae genomes are differentially enriched in CAZymes and peptidases with distinct functionalities and molecular targets. IMPORTANCE This is the most comprehensive study performed thus far on the biosynthetic potential within the Flavobacteriaceae family. Our findings reveal intertwined taxonomic and natural product biosynthesis diversification within the family. We posit that the carbohydrate, peptide, and secondary metabolism triad synergistically shaped the evolution of this keystone bacterial taxon, acting as major forces underpinning the broad host range and opportunistic-to-pathogenic behavior encompassed by species in the family. This study further breaks new ground for future research on select Flavobacteriaceae spp. as reservoirs of novel drug leads.

Publisher

American Society for Microbiology

Subject

Computer Science Applications,Genetics,Molecular Biology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics,Biochemistry,Physiology,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3