The function of the gut microbiota–bile acid–TGR5 axis in diarrhea-predominant irritable bowel syndrome

Author:

Zhan Kai1ORCID,Wu Haomeng234,Xu Yongyin5,Rao Kehan2,Zheng Huan234,Qin Shumin234,Yang Yuanming1,Jia Rui2,Chen Weihuan2,Huang Shaogang2346ORCID

Affiliation:

1. Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, China

2. The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China

3. State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China

4. Collaborative Innovation Team of Traditional Chinese Medicine in Prevention and Treatment of Functional Gastrointestinal Diseases, Guangzhou University of Chinese Medicine, Guangzhou, China

5. Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China

6. The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China

Abstract

ABSTRACT Imbalanced gut microbiota (GM) and abnormal fecal bile acid (BA) are thought to be the key factors for diarrhea-predominant irritable bowel syndrome (IBS-D), but the underlying mechanism remains unclear. Herein, we explore the influence of the GM–BA–Takeda G-protein-coupled receptor 5 (TGR5) axis on IBS-D. Twenty-five IBS-D patients and fifteen healthy controls were recruited to perform BA-related metabolic and metagenomic analyses. Further, the microbiota-humanized IBS-D rat model was established by fecal microbial transplantation (FMT) to investigate the GM–BA–TGR5 axis effects on the colonic barrier and visceral hypersensitivity (VH) in IBS-D. Finally, we used chenodeoxycholic acid (CDCA), an important BA screened out by metabolome, to evaluate whether it affected diarrhea and VH via the TGR5 pathway. Clinical research showed that GM associated with bile salt hydrolase (BSH) activity such as Bacteroides ovatus was markedly reduced in the GM of IBS-D, accompanied by elevated total and primary BA levels. Moreover, we found that CDCA not only was increased as the most important primary BA in IBS-D patients but also could induce VH through upregulating TGR5 in the colon and ileum of normal rats. TGR5 inhibitor could reverse the phenotype, depression-like behaviors, pathological change, and level of fecal BSH in a microbiota-humanized IBS-D rat model. Our findings proved that human-associated FMT could successfully induce the IBS-D rat model, and the imbalanced GM–BA–TGR5 axis may promote colonic mucosal barrier dysfunction and enhance VH in IBS-D. IMPORTANCE Visceral hypersensitivity and intestinal mucosal barrier damage are important factors that cause abnormal brain–gut interaction in diarrhea-predominant irritable bowel syndrome (IBS-D). Recently, it was found that the imbalance of the gut microbiota–bile acid axis is closely related to them. Therefore, understanding the structure and function of the gut microbiota and bile acids and the underlying mechanisms by which they shape visceral hypersensitivity and mucosal barrier damage in IBS-D is critical. An examination of intestinal feces from IBS-D patients revealed that alterations in gut microbiota and bile acid metabolism underlie IBS-D and symptom onset. We also expanded beyond existing knowledge of well-studied gut microbiota and bile acid and found that Bacteroides ovatus and chenodeoxycholic acid may be potential bacteria and bile acid involved in the pathogenesis of IBS-D. Moreover, our data integration reveals the influence of the microbiota–bile acid–TGR5 axis on barrier function and visceral hypersensitivity.

Funder

MOST | National Natural Science Foundation of China

Guangdong Provincial Academy of Chinese Medical Sciences

Bureau of Science and Information Technology of Guangzhou Municipality | Guangzhou Municipal Science and Technology Project

Publisher

American Society for Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3