Bacillus coagulans restores pathogen-induced intestinal dysfunction via acetate–FFAR2–NF-κB–MLCK–MLC axis in Apostichopus japonicus

Author:

Song Mingshan1ORCID,Zhang Shanshan1,Zhang Zhen1,Guo Liyuan1,Liang Weikang1,Li Chenghua12ORCID,Wang Zhonghua3

Affiliation:

1. State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China

2. Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

3. Shandong Beiyou Biotechnology Co.,Ltd., Weifang, China

Abstract

ABSTRACT Skin ulceration syndrome (SUS) is currently the main disease threatening Apostichopus japonicus aquaculture due to its higher mortality rate and infectivity, which is caused by Vibrio splendidus . Our previous studies have demonstrated that SUS is accompanied by intestinal microbiota (IM) dysbiosis, alteration of short-chain fatty acids (SCFAs) content and the damage to the intestinal barrier. However, the mediating effect of IM on intestine dysfunction is largely unknown. Herein, we conducted comprehensive intestinal microbiota transplantation (IMT) to explore the link between IM and SUS development. Furthermore, we isolated and identified a Bacillus coagulans strain with an ability to produce acetic acid from both healthy individual and SUS individual with IM from healthy donors. We found that dysbiotic IM and intestinal barrier function in SUS recipients A. japonicus could be restored by IM from healthy donors. The B. coagulans strain could restore IM community and intestinal barrier function. Consistently, acetate supply also restores intestinal homeostasis of SUS-diseased and V. splendidus -infected A. japonicus . Mechanically, acetate was found to specifically bind to its receptor-free fatty acid receptor 2 (FFAR2) to mediate IM structure community and intestinal barrier function. Knockdown of FFAR2 by transfection of specific FFAR2 siRNA could hamper acetate-mediated intestinal homeostasis in vivo . Furthermore, we confirmed that acetate/FFAR2 could inhibit V. splendidus -activated NF-κB–MLCK–MLC signaling pathway to restore intestinal epithelium integrity and upregulated the expression of ZO-1 and Occludin. Our findings provide the first evidence that B. coagulans restores pathogen-induced intestinal barrier dysfunction via acetate/FFAR2–NF-κB–MLCK–MLC axis, which provides new insights into the control and prevention of SUS outbreak from an ecological perspective. IMPORTANCE Skin ulceration syndrome (SUS) as a main disease in Apostichopus japonicus aquaculture has severely restricted the developmental A. japonicus aquaculture industry. Intestinal microbiota (IM) has been studied extensively due to its immunomodulatory properties. Short-chain fatty acids (SCFAs) as an essential signal molecule for microbial regulation of host health also have attracted wide attention. Therefore, it is beneficial to explore the link between IM and SUS for prevention and control of SUS. In the study, the contribution of IM to SUS development has been examined. Additionally, our research further validated the restoration of SCFAs on intestinal barrier dysfunction caused by SUS via isolating SCFAs-producing bacteria. Notably, this restoration might be achieved by inhibition of NF-κB–MLCK–MLC signal pathway, which could be activated by V. splendidus . These findings may have important implications for exploration of the role of IM in SUS occurrence and provide insight into the SUS treatment.

Funder

MOST | NSFC | National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3