A TetR family regulator of an RND efflux system that directs artemisinin resistance in Vibrio cholerae

Author:

Chung In-Young1,Choi Shin-Yae1,Bae Hee-Won1,Cho You-Hee1ORCID

Affiliation:

1. Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam-si, South Korea

Abstract

ABSTRACT Artemisinin (ARS) displayed bactericidal activity against Vibrio cholerae . To assess the mechanistic details of its antibacterial action, we have isolated V. cholerae mutants with enhanced ARS resistance and identified a gene (VCA0767) whose loss-of-function resulted in the ARS resistance phenotypes. This gene ( atrR ) encodes a TetR family transcriptional regulator, and its deletion mutant displayed the reduction in ARS-induced ROS formation and DNA damage. Transcriptomic analysis revealed that the genes encoding a r esistance- n odulation-cell d ivision (RND) efflux pump operon ( vexRAB ) and the outer membrane component ( tolC ) were highly upregulated in the artR mutant, suggesting that AtrR might act as a negative regulator of this operon and tolC . Gene deletion of vexR , vexB , or tolC abrogated the ARS resistance of the atrR mutant, and more importantly, the ectopic expression of VexAB-TolC was sufficient for the ARS resistance, indicating that the increased expression of the VexAB-TolC efflux system is necessary and sufficient for the ARS resistance of the atrR mutant. The cytoplasmic accumulation of ARS was compromised in the vexBtolC mutant, suggesting that the VexAB-TolC might be the primary efflux system exporting ARS to reduce its toxicity inside of the bacterial cells. The atrR mutant displayed resistance to erythromycin as well in a VexR-dependent manner. This result suggests that AtrR may act as a global regulator responsible for preventing intracellular accumulation of toxic chemicals by enhancing the RND efflux system. IMPORTANCE Drug efflux protein complexes or efflux pumps are considered as the major determinants of multiple antimicrobial resistance by exporting a wide range of structurally diverse antibiotics in bacterial pathogens. Despite the clinical significance of the increased expression of the efflux pumps, their substrate specificity and regulation mechanisms are poorly understood. Here, we demonstrated that VexAB-TolC, a r esistance- n odulation-cell d ivision (RND) efflux pump of V. cholerae , is responsible for the resistance to artemisinin (ARS), an antimalarial drug with bactericidal activity. Furthermore, we newly identified AtrR, a TetR family repressor, as a global regulator for VexRAB and the common outer membrane channel, TolC, where VexR functions as the pathway-specific regulator of the vexAB operon. Our findings will help improve our insight into a broad range of substrate specificity of the VexAB-TolC system and highlight the complex regulatory networks of the multiple RND efflux systems during V. cholerae pathogenesis.

Funder

National Research Foundation of Korea

Publisher

American Society for Microbiology

Subject

Computer Science Applications,Genetics,Molecular Biology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics,Biochemistry,Physiology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3