Impact of the Novel Prophage ϕSA169 on Persistent Methicillin-Resistant Staphylococcus aureus Endovascular Infection

Author:

Li Liang1,Wang Genzhu1,Li Yi1,Francois Patrice2,Bayer Arnold S.134,Chen Liang5ORCID,Seidl Kati6ORCID,Cheung Ambrose7,Xiong Yan Q.134

Affiliation:

1. The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA

2. The Genomic Research Laboratory in Geneva, Geneva, Switzerland

3. David Geffen School of Medicine at UCLA, Los Angeles, California, USA

4. Department of Medicine, Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, California, USA

5. Center for Discovery and Innovation, Nutley, New Jersey, USA

6. University Hospital of Zurich, Zurich, Switzerland

7. Dartmouth Medical School, Hanover, New Hampshire, USA

Abstract

Bacteriophages are viruses that invade the bacterial host, disrupt bacterial metabolism, and cause the bacterium to lyse. Because of its remarkable antibacterial activity and unique advantages over antibiotics, for instance, bacteriophage is specific for one species of bacteria and resistance to phage is less common than resistance to antibiotics. Indeed, bacteriophage therapy for treating infections due to multidrug-resistant pathogens in humans has become a research hot spot. However, it is also worth considering that bacteriophages are transferable and could cotransfer host chromosomal genes, e.g., virulence and antimicrobial resistance genes, while lysogenizing and integrating into the bacterial chromosome (prophage), thus playing a role in bacterial evolution and virulence. In the current study, we identified a novel prophage, ϕSA169, from a clinical persistent MRSA bacteremia isolate, and we determined that ϕSA169 mediated well-defined in vitro and in vivo phenotypic and genotypic signatures related to the persistent outcome, which may represent a unique and important persistent mechanism(s).

Funder

HHS | National Institutes of Health

Publisher

American Society for Microbiology

Subject

Computer Science Applications,Genetics,Molecular Biology,Modelling and Simulation,Ecology, Evolution, Behavior and Systematics,Biochemistry,Physiology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3