Optimizing metaproteomics database construction: lessons from a study of the vaginal microbiome

Author:

Lee Elliot M.12ORCID,Srinivasan Sujatha1ORCID,Purvine Samuel O.3,Fiedler Tina L.1,Leiser Owen P.3,Proll Sean C.1,Minot Samuel S.1,Deatherage Kaiser Brooke L.3,Fredricks David N.12ORCID

Affiliation:

1. Fred Hutchinson Cancer Research Center , Seattle, Washington, DC, USA

2. University of Washington , Seattle, Washington, DC, USA

3. Pacific Northwest National Laboratory , Richland, Washington, DC, USA

Abstract

ABSTRACT Metaproteomics, a method for untargeted, high-throughput identification of proteins in complex samples, provides functional information about microbial communities and can tie functions to specific taxa. Metaproteomics often generates less data than other omics techniques, but analytical workflows can be improved to increase usable data in metaproteomic outputs. Identification of peptides in the metaproteomic analysis is performed by comparing mass spectra of sample peptides to a reference database of protein sequences. Although these protein databases are an integral part of the metaproteomic analysis, few studies have explored how database composition impacts peptide identification. Here, we used cervicovaginal lavage (CVL) samples from a study of bacterial vaginosis (BV) to compare the performance of databases built using six different strategies. We evaluated broad versus sample-matched databases, as well as databases populated with proteins translated from metagenomic sequencing of the same samples versus sequences from public repositories. Smaller sample-matched databases performed significantly better, driven by the statistical constraints on large databases. Additionally, large databases attributed up to 34% of significant bacterial hits to taxa absent from the sample, as determined orthogonally by 16S rRNA gene sequencing. We also tested a set of hybrid databases which included bacterial proteins from NCBI RefSeq and translated bacterial genes from the samples. These hybrid databases had the best overall performance, identifying 1,068 unique human and 1,418 unique bacterial proteins, ~30% more than a database populated with proteins from typical vaginal bacteria and fungi. Our findings can help guide the optimal identification of proteins while maintaining statistical power for reaching biological conclusions. IMPORTANCE Metaproteomic analysis can provide valuable insights into the functions of microbial and cellular communities by identifying a broad, untargeted set of proteins. The databases used in the analysis of metaproteomic data influence results by defining what proteins can be identified. Moreover, the size of the database impacts the number of identifications after accounting for false discovery rates (FDRs). Few studies have tested the performance of different strategies for building a protein database to identify proteins from metaproteomic data and those that have largely focused on highly diverse microbial communities. We tested a range of databases on CVL samples and found that a hybrid sample-matched approach, using publicly available proteins from organisms present in the samples, as well as proteins translated from metagenomic sequencing of the samples, had the best performance. However, our results also suggest that public sequence databases will continue to improve as more bacterial genomes are published.

Funder

HHS | National Institutes of Health

HHS | NIH | National Institute of General Medical Sciences

Publisher

American Society for Microbiology

Subject

Computer Science Applications,Genetics,Molecular Biology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics,Biochemistry,Physiology,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3