Low salinity activates a virulence program in the generalist marine pathogen Photobacterium damselae subsp. damselae

Author:

Barca Alba V.1ORCID,Vences Ana1ORCID,Terceti Mateus S.1,do Vale Ana23ORCID,Osorio Carlos R.1ORCID

Affiliation:

1. Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela , Santiago de Compostela, Spain

2. Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto , Porto, Portugal

3. i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto, Portugal

Abstract

ABSTRACT Facultative marine bacterial pathogens sense environmental signals so that the expression of virulence factors is upregulated on entry into hosts and downregulated during the free-living lifestyle in the environment. In this study, we utilized transcriptome sequencing to compare the transcriptional profiles of Photobacterium damselae subsp. damselae , a generalist pathogen that causes disease in diverse marine animals and fatal infections in humans at NaCl concentrations that mimic the free-living lifestyle or host internal milieu, respectively. We here show that NaCl concentration constitutes a major regulatory signal that shapes the transcriptome and uncover 1,808 differentially expressed genes (888 upregulated and 920 downregulated in response to low-salt conditions). Growth at 3% NaCl, a salinity that mimics the free-living lifestyle, upregulated genes involved in energy production, nitrogen metabolism, transport of compatible solutes, utilization of trehalose and fructose, and carbohydrate and amino acid metabolism with strong upregulation of the arginine deiminase system (ADS). In addition, we observed a marked increase in resistance to antibiotics at 3% NaCl. On the contrary, the low salinity conditions (1% NaCl) that mimic those encountered in the host triggered a virulence gene expression profile that maximized the production of the type 2 secretion system (T2SS)-dependent cytotoxins damselysin, phobalysin P, and a putative PirAB-like toxin, observations that were corroborated by the analysis of the secretome. Low salinity also upregulated the expression of iron-acquisition systems, efflux pumps, and other functions related to stress response and virulence. The results of this study greatly expand our knowledge of the salinity-responsive adaptations of a generalist and versatile marine pathogen. IMPORTANCE Pathogenic Vibrionaceae species experience continuous shifts of NaCl concentration in their life cycles. However, the impact of salinity changes in gene regulation has been studied in a small number of Vibrio species. In this study, we analyzed the transcriptional response of Photobacterium damselae subsp. damselae ( Pdd ), a generalist and facultative pathogen, to changes in salinity, and demonstrate that growth at 1% NaCl in comparison to 3% NaCl triggers a virulence program of gene expression, with a major impact in the T2SS-dependent secretome. The decrease in NaCl concentration encountered by bacteria on entry into a host is proposed to constitute a regulatory signal that upregulates a genetic program involved in host invasion and tissue damage, nutrient scavenging (notably iron), and stress responses. This study will surely inspire new research on Pdd pathobiology, as well as on other important pathogens of the family Vibrionaceae and related taxa whose salinity regulons still await investigation.

Funder

MEC | Agencia Estatal de Investigación

European Commission

MEC | Fundação para a Ciência e a Tecnologia

Xunta de Galicia

Publisher

American Society for Microbiology

Subject

Computer Science Applications,Genetics,Molecular Biology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics,Biochemistry,Physiology,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3