Affiliation:
1. National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
Abstract
ABSTRACT
Analyzing microbial genomes has become an essential part of microbiology research, giving valuable insights into the functions and evolution of microbial species. Identifying genes of interest and assigning putative annotations to those genes is a central task in genome analysis, and a plethora of tools and approaches have been developed for this task. The ProkFunFind tool was developed to bridge the gap between these various annotation approaches, providing a flexible and customizable search approach to annotate microbial functions. ProkFunFind is designed around hierarchical definitions of biological functions, where individual genes can be identified using heterogeneous search terms consisting of sequences, profile hidden Markov models, protein domains, and orthology groups. This flexible and customizable search approach allows for searches to be tailored to specific biological functions, and the search results are output in multiple formats to facilitate downstream analyses. The utility of the ProkFunFind search tool was demonstrated through its application in searching for bacterial flagella, which are complex organelles composed of multiple genes. Overall, ProkFunFind provides an accessible and flexible way to integrate multiple types of annotation and sequence data while annotating biological functions in microbial genomes.
IMPORTANCE
Genome sequencing and analysis are increasingly important parts of microbiology, providing a way to predict metabolic functions, identify virulence factors, and understand the evolution of microbes. The expanded use of genome sequencing has also brought an abundance of search and annotation methods, but integrating the information from these different methods can be challenging and is often done through
ad hoc
approaches. To bridge the gap between different types of annotations, we developed ProkFunFind, a flexible and customizable search tool incorporating multiple search approaches and annotation types to annotate microbial functions. We demonstrated the utility of ProkFunFind by searching for gene clusters encoding flagellar genes using a combination of different annotation types and searches. Overall, ProkFunFind provides a reproducible and flexible way to identify gene clusters of interest, facilitating the meaningful analysis of new and existing microbial genomes.
Funder
HHS | National Institutes of Health
Publisher
American Society for Microbiology