Affiliation:
1. Microbiology, Ryan Institute and School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
2. Warwick Medical School, University of Warwick, Coventry, United Kingdom
3. Water Engineering Group, School of Engineering, University of Glasgow, Glasgow, United Kingdom
Abstract
Biological wastewater conversion processes collectively constitute one of the single biggest worldwide applications of microbial communities. There is an obvious requirement, therefore, to study the microbial systems central to the success of such technologies. Methanogenic granules, in particular, are architecturally fascinating biofilms that facilitate highly organized cooperation within the metabolic network of the anaerobic digestion (AD) process and, thus, are especially intriguing model systems for microbial ecology. This study, in a way not previously reported, provoked syntrophic and methanogenic activity and the structure of the microbial community, using specific substrates targeting the key trophic groups in AD. Unexpectedly, granule size more strongly than substrate shaped the active portion of the microbial community. Importantly, the findings suggest the size, or age, of granules inherently shapes the active microbiome linked to a life cycle. This provides exciting insights into the function of, and the potential for additional modeling of biofilm development in, methanogenic granules.
Publisher
American Society for Microbiology
Subject
Computer Science Applications,Genetics,Molecular Biology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics,Biochemistry,Physiology,Microbiology
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献