Size Shapes the Active Microbiome of Methanogenic Granules, Corroborating a Biofilm Life Cycle

Author:

Trego Anna Christine1,O’Sullivan Sarah1,Quince Christopher2,Mills Simon1,Ijaz Umer Zeeshan3,Collins Gavin13ORCID

Affiliation:

1. Microbiology, Ryan Institute and School of Natural Sciences, National University of Ireland Galway, Galway, Ireland

2. Warwick Medical School, University of Warwick, Coventry, United Kingdom

3. Water Engineering Group, School of Engineering, University of Glasgow, Glasgow, United Kingdom

Abstract

Biological wastewater conversion processes collectively constitute one of the single biggest worldwide applications of microbial communities. There is an obvious requirement, therefore, to study the microbial systems central to the success of such technologies. Methanogenic granules, in particular, are architecturally fascinating biofilms that facilitate highly organized cooperation within the metabolic network of the anaerobic digestion (AD) process and, thus, are especially intriguing model systems for microbial ecology. This study, in a way not previously reported, provoked syntrophic and methanogenic activity and the structure of the microbial community, using specific substrates targeting the key trophic groups in AD. Unexpectedly, granule size more strongly than substrate shaped the active portion of the microbial community. Importantly, the findings suggest the size, or age, of granules inherently shapes the active microbiome linked to a life cycle. This provides exciting insights into the function of, and the potential for additional modeling of biofilm development in, methanogenic granules.

Publisher

American Society for Microbiology

Subject

Computer Science Applications,Genetics,Molecular Biology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics,Biochemistry,Physiology,Microbiology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3