Oxidative Pathways of Deoxyribose and Deoxyribonate Catabolism

Author:

Price Morgan N.1ORCID,Ray Jayashree1,Iavarone Anthony T.2,Carlson Hans K.1,Ryan Elizabeth M.3,Malmstrom Rex R.3,Arkin Adam P.14,Deutschbauer Adam M.15

Affiliation:

1. Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California, USA

2. QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, California, USA

3. DOE Joint Genome Institute, Walnut Creek, California, USA

4. Department of Bioengineering, University of California, Berkeley, California, USA

5. Department of Plant and Microbial Biology, University of California, Berkeley, California, USA

Abstract

Deoxyribose is one of the building blocks of DNA and is released when cells die and their DNA degrades. We identified a bacterium that can grow with deoxyribose as its sole source of carbon even though its genome does not contain any of the known genes for breaking down deoxyribose. By growing many mutants of this bacterium together on deoxyribose and using DNA sequencing to measure the change in the mutants’ abundance, we identified multiple protein-coding genes that are required for growth on deoxyribose. Based on the similarity of these proteins to enzymes of known function, we propose a 6-step pathway in which deoxyribose is oxidized and then cleaved. Diverse bacteria use a portion of this pathway to break down a related compound, deoxyribonate, which is a waste product of metabolism. Our study illustrates the utility of large-scale bacterial genetics to identify previously unknown metabolic pathways.

Funder

DOE | Office of Science

Publisher

American Society for Microbiology

Subject

Computer Science Applications,Genetics,Molecular Biology,Modelling and Simulation,Ecology, Evolution, Behavior and Systematics,Biochemistry,Physiology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3