Refinement of the “ Candidatus Accumulibacter” genus based on metagenomic analysis of biological nutrient removal (BNR) pilot-scale plants operated with reduced aeration

Author:

Stewart Rachel D.1,Myers Kevin S.23ORCID,Amstadt Carly1,Seib Matt4,McMahon Katherine D.125ORCID,Noguera Daniel R.123ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA

2. Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA

3. Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA

4. Madison Metropolitan Sewerage District, Madison, Wisconsin, USA

5. Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA

Abstract

ABSTRACT Members of the “ Candidatus Accumulibacter” genus are widely studied as key polyphosphate-accumulating organisms (PAOs) in biological nutrient removal (BNR) facilities performing enhanced biological phosphorus removal (EBPR). This diverse lineage includes 18 “ Ca . Accumulibacter” species, which have been proposed based on the phylogenetic divergence of the polyphosphate kinase 1 ( ppk1 ) gene and genome-scale comparisons of metagenome-assembled genomes (MAGs). Phylogenetic classification based on the 16S rRNA genetic marker has been difficult to attain because most “ Ca . Accumulibacter” MAGs are incomplete and often do not include the rRNA operon. Here, we investigate the “ Ca . Accumulibacter” diversity in pilot-scale treatment trains performing BNR under low dissolved oxygen (DO) conditions using genome-resolved metagenomics. Using long-read sequencing, we recovered medium- and high-quality MAGs for 5 of the 18 “ Ca . Accumulibacter” species, all with rRNA operons assembled, which allowed a reassessment of the 16S rRNA-based phylogeny of this genus and an analysis of phylogeny based on the 23S rRNA gene. In addition, we recovered a cluster of MAGs that based on 16S rRNA, 23S rRNA, ppk1 , and genome-scale phylogenetic analyses do not belong to any of the currently recognized “ Ca . Accumulibacter” species for which we propose the new species designation “ Ca . Accumulibacter jenkinsii” sp. nov. Relative abundance evaluations of the genus across all pilot plant operations revealed that regardless of the operational mode, “ Ca . A. necessarius” and “ Ca . A. propinquus” accounted for more than 40% of the “ Ca . Accumulibacter” community, whereas the newly proposed “ Ca . A. jenkinsii” accounted for about 5% of the “ Ca . Accumulibacter” community. IMPORTANCE One of the main drivers of energy use and operational costs in activated sludge processes is the amount of oxygen provided to enable biological phosphorus and nitrogen removal. Wastewater treatment facilities are increasingly considering reduced aeration to decrease energy consumption, and whereas successful BNR has been demonstrated in systems with minimal aeration, an adequate understanding of the microbial communities that facilitate nutrient removal under these conditions is still lacking. In this study, we used genome-resolved metagenomics to evaluate the diversity of the “ Candidatus Accumulibacter” genus in pilot-scale plants operating with minimal aeration. We identified the “ Ca . Accumulibacter” species enriched under these conditions, including one novel species for which we propose “ Ca . Accumulibacter jenkinsii” sp. nov. as its designation. Furthermore, the MAGs obtained for five additional “ Ca . Accumulibacter” species further refine the phylogeny of the “ Ca . Accumulibacter” genus and provide new insight into its diversity within unconventional biological nutrient removal systems.

Funder

National Science Foundation

Madison Metropolitan Sewerage District

DOE | Great Lakes Bioenergy Research Center

Publisher

American Society for Microbiology

Reference58 articles.

1. Stensel H. 1991. Principles of biological phosphorus removal, p 141–166. In Phosphorus and nitrogen removal from municipal wastewater: principles and practice, 2nd ed

2. McMahon KD, He S, Oehmen A. 2010. The microbiology of phosphorus removal by activated sludge, p 281–319. In Microbial ecology of activated sludge. IWA Publishers.

3. Involvement of Rhodocyclus -Related Organisms in Phosphorus Removal in Full-Scale Wastewater Treatment Plants

4. Advances in enhanced biological phosphorus removal: From micro to macro scale

5. Biochemical model for enhanced biological phosphorus removal

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3