In Vitro Antiviral Activity of AG7088, a Potent Inhibitor of Human Rhinovirus 3C Protease

Author:

Patick A. K.1,Binford S. L.1,Brothers M. A.1,Jackson R. L.1,Ford C. E.1,Diem M. D.1,Maldonado F.1,Dragovich P. S.1,Zhou R.1,Prins T. J.1,Fuhrman S. A.1,Meador J. W.1,Zalman L. S.1,Matthews D. A.1,Worland S. T.1

Affiliation:

1. Agouron Pharmaceuticals, Inc., San Diego, California 92121

Abstract

ABSTRACT AG7088 is a potent, irreversible inhibitor of human rhinovirus (HRV) 3C protease {inactivation rate constant ( k obs /[I]} = 1,470,000 ± 440,000 M −1 s −1 for HRV 14) that was discovered by protein structure-based drug design methodologies. In H1-HeLa and MRC-5 cell protection assays, AG7088 inhibited the replication of all HRV serotypes (48 of 48) tested with a mean 50% effective concentration (EC 50 ) of 0.023 μM (range, 0.003 to 0.081 μM) and a mean EC 90 of 0.082 μM (range, 0.018 to 0.261 μM) as well as that of related picornaviruses including coxsackieviruses A21 and B3, enterovirus 70, and echovirus 11. No significant reductions in the antiviral activity of AG7088 were observed when assays were performed in the presence of α 1 -acid glycoprotein or mucin, proteins present in nasal secretions. The 50% cytotoxic concentration of AG7088 was >1,000 μM, yielding a therapeutic index of >12,346 to >333,333. In a single-cycle, time-of-addition assay, AG7088 demonstrated antiviral activity when added up to 6 h after infection. In contrast, a compound targeting viral attachment and/or uncoating was effective only when added at the initiation of virus infection. Direct inhibition of 3C proteolytic activity in infected cells treated with AG7088 was demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of radiolabeled proteins, which showed a dose-dependent accumulation of viral precursor polyproteins and reduction of processed protein products. The broad spectrum of antiviral activity of AG7088, combined with its efficacy even when added late in the virus life cycle, highlights the advantages of 3C protease as a target and suggests that AG7088 will be a promising clinical candidate.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Reference55 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3