Affiliation:
1. Laboratoire des Listeria
2. Groupe d'Immunité Innée et Signalisation, Institut Pasteur, Paris, France
Abstract
SUMMARY
The gram-positive bacterium
Staphylococcus aureus
is a major pathogen responsible for a variety of diseases ranging from minor skin infections to life-threatening conditions such as sepsis. Cell wall-associated and secreted proteins (e.g., protein A, hemolysins, and phenol-soluble modulin) and cell wall components (e.g., peptidoglycan and alanylated lipoteichoic acid) have been shown to be inflammatory, and these staphylococcal components may contribute to sepsis. On the host side, many host factors have been implicated in the innate detection of staphylococcal components. One class of pattern recognition molecules, Toll-like receptor 2, has been shown to function as the transmembrane component involved in the detection of staphylococcal lipoteichoic acid and phenol-soluble modulin and is involved in the synthesis of inflammatory cytokines by monocytes/macrophages in response to these components. Nod2 (nucleotide-binding oligomerization domain 2) is the intracellular sensor for muramyl dipeptide, the minimal bioactive structure of peptidoglycan, and it may contribute to the innate immune defense against
S. aureus
. The staphylococcal virulence factor protein A was recently shown to interact directly with tumor necrosis factor receptor 1 in airway epithelium and to reproduce the effects of tumor necrosis factor alpha. Finally, peptidoglycan recognition protein L is an amidase that inactivates the proinflammatory activities of peptidoglycan. However, peptidoglycan recognition protein L probably plays a minor role in the innate immune response to
S. aureus
. Thus, several innate immunity receptors may be implicated in host defense against
S. aureus
.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health,General Immunology and Microbiology,Epidemiology
Reference225 articles.
1. Abachin, E., C. Poyart, E. Pellegrini, E. Milohanic, F. Fiedler, P. Berche, and P. Trieu-Cuot. 2002. Formation of d-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes. Mol. Microbiol.43:1-14.
2. Abraham, E. 2002. Anti-cytokine therapy, p. 719-728. In J. L. Vincent, J. Carlet, and S. M. Opal (ed.), The sepsis text. Kluwer Academic Publishers, Dordrecht, The Netherlands.
3. Aderem, A., and R. J. Ulevitch. 2000. Toll-like receptors in the induction of the innate immune response. Nature406:782-787.
4. Akira, S., K. Takeda, and T. Kaisho. 2001. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol.2:675-680.
5. Alberti, C., C. Brun-Buisson, S. V. Goodman, D. Guidici, J. Granton, R. Moreno, M. Smithies, O. Thomas, A. Artigas, and J. R. Le Gall. 2003. Influence of systemic inflammatory response syndrome and sepsis on outcome of critically ill infected patients. Am. J. Respir. Crit. Care Med.168:77-84.
Cited by
384 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献