Author:
Burns J L,Mendelman P M,Levy J,Stull T L,Smith A L
Abstract
Chloramphenicol resistance in Haemophilus influenzae occurs most frequently via plasmid-mediated chloramphenicol acetyltransferase production. We studied four strains with high-level chloramphenicol resistance (MIC greater than 20 micrograms/ml) which did not have detectable chloramphenicol acetyltransferase activity. The chloramphenicol resistance determinant was transformed into a chloramphenicol-susceptible laboratory H. influenzae strain from each of the four wild-type strains, enabling isogenic comparisons. By thin-layer chromatography and a bioassay, there was no evidence of non-chloramphenicol acetyltransferase modification of chloramphenicol. In vitro protein synthesis in the presence of chloramphenicol was equivalently inhibited in the chloramphenicol-resistant transformants and in the susceptible recipient. Chloramphenicol uptake by these strains during logarithmic growth was compared by high-pressure liquid chromatographic quantitation; at chloramphenicol concentrations of 5, 10, and 20 micrograms/ml the four transformants showed a decreased rate of uptake of chloramphenicol compared with the isogenic chloramphenicol-susceptible recipient. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis of outer membrane proteins revealed a markedly diminished 40-kilodalton protein in the resistant transformants. We propose that the mechanism of chloramphenicol resistance in these strains is a relative permeability barrier due to the loss of an outer membrane protein.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology
Cited by
88 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献