Toll-Like Receptors Differentially Regulate CC and CXC Chemokines in Skeletal Muscle via NF-κB and Calcineurin

Author:

Boyd John H.12,Divangahi Maziar1,Yahiaoui Linda1,Gvozdic Dusanka1,Qureshi Salman3,Petrof Basil J.12

Affiliation:

1. Meakins-Christie Laboratories, McGill University, Montreal, Canada

2. Respiratory Division, McGill University Health Center, Montreal, Canada

3. Critical Care Division, McGill University Health Center, Montreal, Canada

Abstract

ABSTRACT Immunologically active molecules such as cytokines and chemokines have been implicated in skeletal muscle weakness during sepsis as well as recovery from muscle injury. In sepsis, Toll-like receptors (TLRs) act as key sentinel molecules of the innate immune system. Here we determined skeletal muscle cell responses of two prototypical CC and CXC chemokine genes (monocyte chemoattractant protein 1 [MCP-1] and KC, respectively), to stimulation with specific TLR ligands. In addition, we examined whether NF-κB and calcineurin signaling are involved in these responses. Differentiated myotubes and intact whole muscles expressed TLR2, TLR4, TLR5, and TLR9. Stimulation with ligands for TLR2 (peptidoglycan) or TLR4 (LPS) elicited robust and equivalent levels of MCP-1 and KC mRNA expression, whereas stimulation of TLR5 (by flagellin) required gamma interferon priming to induce similar effects. Although both TLR2 and TLR4 ligands activated the NF-κB pathway, NF-κB reporter activity was approximately 20-fold greater after TLR4 stimulation than after TLR2 stimulation. Inhibitory effects of NF-κB blockade on TLR-mediated chemokine gene expression, by either pharmacological (pyrrolidine dithiocarbamate) or molecular (IKKβ dominant-negative transfection) methods, were also more pronounced during TLR4 stimulation. In contrast, inhibitory effects on TLR-mediated chemokine expression of calcineurin blockade (by FK506) were greater for TLR2 than for TLR4 stimulation. MCP-1 and KC mRNA levels also demonstrated differential responses to NF-κB and calcineurin blockade during stimulation with specific TLR ligands. We conclude that skeletal muscle cells differentially utilize the NF-κB and calcineurin pathways in a TLR-specific manner to enable complex regulation of CC and CXC chemokine gene expression.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3