Identification of distinct genotypes in circulating RSV A strains based on variants in the virus replication-associated genes

Author:

Musa Abdulafiz O.12,Faber Sydney R.12,Forrest Kaitlyn34,Smith Kenneth P.56,Sengupta Shaon34,López Carolina B.12ORCID

Affiliation:

1. Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA

2. Center for Women's Infectious Diseases Research, Washington University School of Medicine, Saint Louis, Missouri, USA

3. Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA

4. Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA

5. Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA

6. Infectious Disease Diagnostics Laboratory, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA

Abstract

ABSTRACT Respiratory syncytial virus (RSV) is a common cause of respiratory infection that often leads to hospitalization of infected younger children and older adults. RSV is classified into two strains, A and B, each with several subgroups or genotypes. One issue with the definition of these subgroups is the lack of a unified method of identification or genotyping. We propose that genotyping strategies based on the genes coding for replication-associated proteins could provide critical information on the replication capacity of the distinct subgroups, while clearly distinguishing genotypes. Here, we analyzed the virus replication-associated genes N, P, M2, and L from de novo assembled RSV A sequences obtained from 31 newly sequenced samples from hospitalized patients in Philadelphia and 78 additional publicly available sequences from different geographic locations within the United States. In-depth analysis and annotation of variants in the replication-associated proteins identified the polymerase protein L as a robust target for genotyping RSV subgroups. Importantly, our analysis revealed non-synonymous variations in L that were consistently accompanied by conserved changes in its co-factor P or the M2-2 protein, suggesting associations and interactions between specific domains of these proteins. Similar associations were seen among sequences of the related human metapneumovirus. These results highlight L as an alternative to other RSV genotyping targets and demonstrate the value of in-depth analyses and annotations of RSV sequences as it can serve as a foundation for subsequent in vitro and clinical studies on the efficiency of the polymerase and fitness of different virus isolates. IMPORTANCE Given the historical heterogeneity of respiratory syncytial virus (RSV) and the disease it causes, there is a need to understand the properties of the circulating RSV strains each season. This information would benefit from an informative and consensus method of genotyping the virus. Here, we carried out a variant analysis that shows a pattern of specific variations among the replication-associated genes of RSV A across different seasons. Interestingly, these variation patterns, which were also seen in human metapneumovirus sequences, point to previously defined interactions of domains within these genes, suggesting co-variation in the replication-associated genes. Our results also suggest a genotyping strategy that can prove to be particularly important in understanding the genotype-phenotype correlation in the era of RSV vaccination, where selective pressure on the virus to evolve is anticipated. More importantly, the categorization of pneumoviruses based on these patterns may be of prognostic value.

Funder

HHS | National Institutes of Health

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3