The Type 2 Secretion Pseudopilin, gspJ , Is Required for Multihost Pathogenicity of Burkholderia cenocepacia AU1054

Author:

Somvanshi Vishal S.12,Viswanathan Poorna12,Jacobs Janette L.23,Mulks Martha H.12,Sundin George W.23,Ciche Todd A.12

Affiliation:

1. Department of Microbiology and Molecular Genetics

2. Center for Microbial Pathogenesis

3. Department of Plant Pathology, Michigan State University, East Lansing, Michigan 48824

Abstract

ABSTRACT Burkholderia cenocepacia AU1054 is an opportunistic pathogen isolated from the blood of a person with cystic fibrosis. AU1054 is a multihost pathogen causing rapid pathogenicity to Caenorhabditis elegans nematodes. Within 24 h, AU1054 causes greater than 50% mortality, reduced growth, emaciated body, distended intestinal lumen, rectal swelling, and prolific infection of the nematode intestine. To determine virulence mechanisms, 3,000 transposon mutants were screened for attenuated virulence in nematodes. Fourteen virulence-attenuated mutants were isolated, and the mutant genes were identified. These genes included paaA , previously identified as being required for full virulence of B. cenocepacia K56-2. Six mutants were restored in virulence by complementation with their respective wild-type gene. One of these contained an insertion in gspJ , predicted to encode a pseudopilin component of the type 2 secretion system (T2SS). Nematodes infected with AU1054 gspJ had fewer bacteria present in the intestine than those infected with the wild type but still showed rectal swelling. The gspJ mutant was also defective in pathogenicity to onion and in degradation of polygalacturonic acid and casein. This result differs from previous studies where no or little role was found for T2SS in Burkholderia virulence, although virulence factors such as zinc metalloproteases and polygalacturonase are known to be secreted by the T2SS. This study highlights strain specific differences in B. cenocepacia virulence mechanisms important for understanding what enables environmental microbes to function as opportunistic pathogens.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3