Abstract
Yersinia pestis TJW, an avirulent wild-type strain, requires phenylalanine and methionine for growth. It was of interest to examine and define the methionine transport system because of this requirement. The methionine system showed saturation kinetics with a Km for transport of approximately 9 times 10(-7) M. After 8 s of methionine transport, essentially all of the methionine label appeared in S-adenosyl-L-methionine (SAM) as detected in ethanol extracts. Small amounts of free methionine was detected intracellularly after 1 min of transport. Addition of glucose increased significantly the amount of intracellular methionine at 1 min. A series of SAM metabolic products was detected after 90 s to 5 min of transport including: 5'-thiomethyladenosine, homoserine lactone, S-adenosyl homoserine, and a fluorescent methyl receptor compound. Results from assays for SAM synthetase in spheroplast fractions showed a small (16%) but significant portion of synthetase associated with the membrane. However, most of the enzyme activity was associated with the cytoplasmic fraction. Methionine transport was characterized by a high degree of stereospecificity. No competition occurred from structurally unrelated amino acids. Although uptake was inhibited by uncoupling and sulfhydryl reagents, no efflux was observed. Results using energy inhibitors on unstarved and starved cells showed that respiratory inhibitors such as potassium cyanide (KCN) and amytal were most effective, and that arsenate was least effective. KCN plus arsenate completely blocked utilization of energy derived from glucose, and KCN completely blocked utilization of energy deived from D-lactate. The data indicate that methionine transport in Y. pestis is linked to the trapping of methionine in SAM. The results further suggest that this transport system can be classified as a permease-bound system where transport is coupled to an energized membrane state and to respiration.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献