Genetic mapping of a mutation that causes ribonucleases III deficiency in Escherichia coli

Author:

Studier F W

Abstract

the mutation that causes ribonuclease III (RNase III) deficiency in strain AB301-105 of Kindler et al. (1973) has been mapped by use of F' merodiploids, Hfr matings, and P1 transduction. This mutation, rnc-105, lies close to nadB, near 49 min on the genetic map of Escherichia coli. The rnc-105 mutation has been transferred from its original genetic background by transduction and conjugation, and these new strains have the same defects in ribonucleic acid processing reported previously for AB301-105. Strains that carry rnc-105 grow more slowly than parental rnc+ strains, but the difference in growth rate seems to depend on the genetic background of each strain. Bacteriophage T7 grows about equally well in RNase III+ and III- female strains of E. coli, even though the specific cuts that RNase III makes in T7 ribonucleic acid are not made in the RNase III- strains. A low-phosphate defined medium in which most E. coli strains seem to grow well was developed. This medium is equally useful for labeling ribonucleic acids with 32PO4 and as a selective medium for genetic manipulations. It was used to determine the growth requirements of strain AB301-105, which are biotin and succinate in addition to the methionine and histidine requirements of the parental strain. The biotin mutation lies near the position expected from known mutations of E. coli, but the succinate mutation apparently does not. The possibility that the succinate requirement could be due to the RNase III deficiency is discussed. A uraP mutation was isolated for use in transferring rnc-105 between strains by conjugation. It lies near 47 min, somewhat removed from the commonly accepted position for uraP.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3