Author:
Bauer Omri,Sharir Amnon,Kimura Ayako,Hantisteanu Shay,Takeda Shu,Groner Yoram
Abstract
Congenital osteopenia is a bone demineralization condition that is associated with elevated fracture risk in human infants. Here we show thatRunx3, likeRunx2, is expressed in precommitted embryonic osteoblasts and that Runx3-deficient mice develop severe congenital osteopenia. Runx3-deficient osteoblast-specific (Runx3fl/fl/Col1α1-cre), but not chondrocyte-specific (Runx3fl/fl/Col1α2-cre), mice are osteopenic. This demonstrates that an osteoblastic cell-autonomous function of Runx3 is required for proper osteogenesis. Bone histomorphometry revealed that decreased osteoblast numbers and reduced mineral deposition capacity in Runx3-deficient mice cause this bone formation deficiency. Neonatal bone and cultured primary osteoblast analyses revealed a Runx3-deficiency-associated decrease in the number of active osteoblasts resulting from diminished proliferation and not from enhanced osteoblast apoptosis. These findings are supported by Runx3-null culture transcriptome analyses showing significant decreases in the levels of osteoblastic markers and increases in the levels of Notch signaling components. Thus, while Runx2 is mandatory for the osteoblastic lineage commitment, Runx3 is nonredundantly required for the proliferation of these precommitted cells, to generate adequate numbers of active osteoblasts. HumanRUNX3resides on chromosome 1p36, a region that is associated with osteoporosis. Therefore, RUNX3 might also be involved in human bone mineralization.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献